首页> 外文期刊>Tissue engineering, Part A >Numerical fluid-dynamic optimization of microchannel-provided porous scaffolds for the co-culture of adherent and non-adherent cells.
【24h】

Numerical fluid-dynamic optimization of microchannel-provided porous scaffolds for the co-culture of adherent and non-adherent cells.

机译:微通道提供的多孔支架用于粘附细胞和非粘附细胞共培养的数值流体动力学优化。

获取原文
获取原文并翻译 | 示例
           

摘要

Computational fluid dynamic (CFD) techniques were used to optimize the microenvironment inside scaffolds for hematopoietic stem cell (HSC) culture in a perfusion bioreactor. These matrices are meant to be seeded with adherent bone marrow stromal cells and then co-cultivated with HSCs; the scaffold micro-architecture and the fluid-dynamic conditions have to be optimized to avoid non-adherent stem cells being dragged away while ensuring adequate nutrient supply. The insertion of longitudinal microchannels was tested as a tool to improve perfusion in a homogeneous porous scaffold. Models of microchannel-provided scaffolds, characterized by different values of geometric parameters concerning pores and channels, were built, and numerical fluid-dynamic and oxygen-transfer analyses were carried out. The results of the computations indicated that the microchannels created preferential paths for culture medium flow, causing low shear stresses and drag forces within the pores; meanwhile, they improved oxygen delivery by forcing its penetration into the scaffold bulk. In particular, an 85% porous, 3-mm-thick scaffold with 175-microm-diameter pores was considered; at a constant average drag force guaranteeing stem cell suspension inside this porous bulk, the addition of approximately 260-microm-diameter, 700-microm-spaced channels resulted in 34% higher oxygen partial pressure at the exit (approximately 135 vs 101 mmHg), maintaining a wall shear stress median value of approximately 0.14 mPa. The present work demonstrates the capacity of microchannel-provided scaffolds to ensure suitable conditions for HSC culture and shows that CFD methods are a valuable tool to retrieve significant clues for the design of the culture environment.
机译:计算流体动力学(CFD)技术用于优化灌注生物反应器中用于造血干细胞(HSC)培养的支架内部微环境。这些基质是要接种粘附的骨髓基质细胞,然后与HSC共培养的。支架的微结构和流体动力学条件必须进行优化,以避免非粘附干细胞被拖走,同时确保充足的营养供应。纵向微通道的插入被测试为改善均匀多孔支架中灌注的工具。建立了以微通道为基础的支架模型,该模型具有与孔隙和通道有关的几何参数的不同值,并进行了数值流体动力学和氧转移分析。计算结果表明,微通道为培养基流动创造了优先路径,从而在孔内产生低剪切应力和阻力。同时,他们通过迫使氧气渗透到脚手架中来改善氧气的输送。特别地,考虑了具有175微米直径孔的85%的多孔,3毫米厚的支架。在恒定的平均拉力下确保干细胞悬浮在多孔主体内,增加大约260微米直径,700微米间隔的通道导致出口处的氧气分压高34%(大约135 vs 101 mmHg),保持壁切应力中值约为0.14 mPa。目前的工作证明了微通道提供的支架确保为HSC培养提供合适条件的能力,并表明CFD方法是一种有价值的工具,可为设计培养环境提供重要线索。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号