...
首页> 外文期刊>Theory in biosciences >Diploidy and the selective advantage for sexual reproduction in unicellular organisms
【24h】

Diploidy and the selective advantage for sexual reproduction in unicellular organisms

机译:二倍体和单细胞有机体有性生殖的选择性优势

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This article develops mathematical models describing the evolutionary dynamics of both asexually and sexually reproducing populations of diploid unicellular organisms. The asexual and sexual life cycles are based on the asexual and sexual life cycles in Saccharomyces cerevisiae, Baker's yeast, which normally reproduces by asexual budding, but switches to sexual reproduction when stressed. The mathematical models consider three reproduction pathways: (1) Asexual reproduction, (2) self-fertilization, and (3) sexual reproduction. We also consider two forms of genome organization. In the first case, we assume that the genome consists of two multi-gene chromosomes, whereas in the second case, we consider the opposite extreme and assume that each gene defines a separate chromosome, which we call the multi-chromosome genome. These two cases are considered to explore the role that recombination has on the mutation-selection balance and the selective advantage of the various reproduction strategies. We assume that the purpose of diploidy is to provide redundancy, so that damage to a gene may be repaired using the other, presumably undamaged copy (a process known as homologous recombination repair). As a result, we assume that the fitness of the organism only depends on the number of homologous gene pairs that contain at least one functional copy of a given gene. If the organism has at least one functional copy of every gene in the genome, we assume a fitness of 1. In general, if the organism has l homologous pairs that lack a functional copy of the given gene, then the fitness of the organism is kappa(l). The kappa(l) are assumed to be monotonically decreasing, so that kappa(0) = 1 > kappa(1) > kappa(2) > ... > kappa(infinity) = 0. For nearly all of the reproduction strategies we consider, we find, in the limit of large N, that the mean fitness at mutation-selection balance is max{2e(-mu) - 1, 0} where N is the number of genes in the haploid set of the genome, epsilon is the probability that a given DNA template strand of a given gene produces a mutated daughter during replication, and mu = N epsilon. The only exception is the sexual reproduction pathway for the multi-chromosomed genome. Assuming a multiplicative fitness landscape where kappa(1) = alpha(l) for alpha is an element of (0, 1), this strategy is found to have a mean fitness that exceeds the mean fitness of all the other strategies. Furthermore, while other reproduction strategies experience a total loss of viability due to the steady accumulation of deleterious mutations once mu exceeds ln 2, no such transition occurs in the sexual pathway. Indeed, in the limit as alpha -> 1 for the multiplicative landscape, we can show that the mean fitness for the sexual pathway with the multi-chromosomed genome converges to e(-2 mu), which is always positive. We explicitly allow for mitotic recombination in this study, which, in contrast to previous studies using different models, does not have any advantage over other asexual reproduction strategies. The results of this article provide a basis for understanding the selective advantage of the specific meiotic pathway that is employed by sexually reproducing organisms. The results of this article also suggest an explanation for why unicellular organisms such as Saccharomyces cerevisiae (Baker's yeast) switch to a sexual mode of reproduction when stressed. While the results of this article are based on modeling mutation- propagation in nicellular organisms, they nevertheless suggest that, in more complex organisms with significantly larger genomes, sex is necessary to prevent the loss of viability of a population due to genetic drift. Finally, and perhaps most importantly, the results of this article demonstrate a selective advantage for sexual reproduction with fewer and much less restrictive assumptions than those of previous studies.
机译:本文开发了描述二倍体单细胞生物无性繁殖和有性繁殖种群进化动力学的数学模型。无性生活和性生活周期基于贝克酵母酵母的无性生活和性生活周期,贝克酵母通常通过无性萌芽繁殖,但在压力下会转变为有性繁殖。数学模型考虑了三种繁殖途径:(1)无性繁殖,(2)自体受精和(3)有性繁殖。我们还考虑了基因组组织的两种形式。在第一种情况下,我们假设基因组由两个多基因染色体组成,而在第二种情况下,我们考虑相反的极端,并假设每个基因定义了一个独立的染色体,我们将其称为多染色体基因组。考虑这两种情况以探讨重组对突变选择平衡和各种繁殖策略的选择优势的作用。我们假设二倍体的目的是提供冗余,以便可以使用另一个大概没有损坏的副本来修复对基因的损坏(此过程称为同源重组修复)。结果,我们假定生物体的适应性仅取决于包含给定基因的至少一个功能性拷贝的同源基因对的数量。如果该生物体在基因组中每个基因至少具有一个功能拷贝,则我们假设适应度为1。通常,如果该生物体具有1个缺少给定基因功能拷贝的同源对,则该生物体的适应度为κ(l)。假定kappa(l)是单调递减的,因此kappa(0)= 1> kappa(1)> kappa(2)> ...> kappa(infinity)=0。对于几乎所有的繁殖策略,我们考虑到我们发现,在大N的限制下,突变选择平衡的平均适应度为max {2e(-mu)-1,0},其中N是基因组单倍体集合epsilon中的基因数目是给定基因的给定DNA模板链在复制过程中产生突变子代的概率,并且mu = N epsilon。唯一的例外是多染色体基因组的有性生殖途径。假设乘法适应度景观(其中alpha的kappa(1)= alpha(l)是(0,1)的元素),则发现该策略的平均适应度超过所有其他策略的平均适应度。此外,虽然一旦mu超过ln 2,有害突变的稳定积累,其他繁殖策略就会完全丧失活力,而在性途径中则不会发生这种转变。确实,在乘法景观的alpha-> ​​1的极限中,我们可以证明,具有多染色体基因组的性途径的平均适应度收敛到e(-2 mu),该值始终为正。我们明确允许这项研究中的有丝分裂重组,与以前使用不同模型的研究相比,它没有其他无性繁殖策略的优势。本文的结果为理解有性繁殖生物所采用的特定减数分裂途径的选择性优势提供了基础。本文的结果还提出了一个解释,以解释为什么单核生物如酿酒酵母(贝克酵母)在受到压力时会转换为有性生殖方式。尽管本文的结果是基于对微细胞生物中突变传播进行建模的,但他们仍建议,在基因组明显更大的更复杂生物中,性别对于防止由于遗传漂移而导致种群的生存力丧失是必要的。最后,也许是最重要的是,本文的结果证明了有性生殖的选择性优势,其限制性假设比以前的研究少,而且约束性假设要少得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号