首页> 外文期刊>The Journal of Experimental Biology >Allometric scaling of mammalian metabolism
【24h】

Allometric scaling of mammalian metabolism

机译:哺乳动物新陈代谢的异速生长

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The importance of size as a determinant of metabolic rate (MR) was first suggested by Sarrus and Rameaux over 160 years ago. Max Rubner's finding of a proportionality between MR and body surface area in dogs (in 1883) was consistent with Sarrus and Rameaux's formulation and suggested a proportionality between MR and body mass (Mb) raised to the power of 2/3. However, interspecific analyses compiled during the first half of the 20th century concluded that mammalian basal MR (BMR, ml O2 h(-1)) was proportional to Mb3/4, a viewpoint that persisted for seven decades, even leading to its common application to non-mammalian groups. Beginning in 1997, the field was re-invigorated by three new theoretical explanations for 3/4-power BMR scaling. However, the debate over which theory accurately explains 3/4-power scaling may be premature, because some authors maintain that there is insufficient evidence to adopt an exponent of 3/4 over 2/3. If progress toward understanding the non-isometric scaling of BMR is ever to be made, it is first essential to know what the relationship actually is. We re-examine previous investigations of BMR scaling by standardising units and recalculating regression statistics. The proportion of large herbivores in a data set is positively correlated both with the scaling exponent (b, where BMR=aMb b) and the coefficient of variation (CV: the standard deviation of ln-ln residuals) of the relationship. Inclusion of large herbivores therefore both inflates b and increases variation around the calculated trendline. This is related to the long fast duration required to achieve the postabsorptive conditions required for determination of BMR, and because peak post-feeding resting MR (RMRpp) scales with an exponent of 0.75+/-0.03 (95% CI). Large herbivores are therefore less likely to be postabsorptive when MR is measured, and are likely to have a relatively high MR if not postabsorptive. The 3/4 power scaling of RMRpp is part of a wider trend where, with the notable exception of cold-induced maximum MR (b=0.65+/-0.05), b is positively correlated with the elevation of the relationship (higher MR values scale more steeply). Thus exercise-induced maximum MR (b=0.87+/-0.05) scales more steeply than RMRpp, field MR (b=0.73+/-0.04), thermoneutral resting MR (RMRt, b=0.712+/-0.013) and BMR. The implication of this observation is that contamination of BMR data with non-basal measurements is likely to increase the BMR scaling exponent even if the contamination is randomly distributed with respect to Mb. Artificially elevated scaling exponents can therefore be accounted for by the inclusion of measurements that fail to satisfy the requirements for basal metabolism, which are strictly defined (adult, non-reproductive, postabsorptive animals resting in a thermoneutral environment during the inactive circadian phase). Similarly, a positive correlation between Mb and body temperature (Tb) and between Tb and mass-independent BMR contributes to elevation of b. While not strictly a defined condition for the measurement of BMR, the normalisation of BMR measurements to a common Tb (36.2 degrees C) to achieve standard metabolic rate (SMR) further reduces the CV of the relationship. Clearly the value of the exponent depends on the conditions under which the data are selected. The exponent for true BMR is 0.686 (+/-0.014), Tb normalised SMR is 0.675 (+/-0.013) and RMRt is 0.712 (+/-0.013).
机译:在160年前,Sarrus和Rameaux首次提出大小作为代谢率(MR)决定因素的重要性。马克斯·鲁伯纳(Max Rubner)发现狗的MR与身体表面积之间存在比例关系(1883年)与Sarrus和Rameaux的公式一致,并提出了MR与体重(Mb)之间的比例关系提高至2/3的幂。但是,在20世纪上半叶进行的种间分析得出的结论是,哺乳动物基底MR(BMR,ml O2 h(-1))与Mb3 / 4成比例,这一观点持续了七十年,甚至导致了其普遍应用非哺乳动物群体。从1997年开始,通过针对3/4功率BMR缩放的三个新的理论解释重新激发了该领域。但是,关于哪种理论可以准确地解释3/4功率缩放的争论可能为时过早,因为一些作者坚持认为没有足够的证据采用2/3上的3/4指数。如果要在了解BMR的非等距缩放方面取得进展,那么首先必须了解实际的关系。我们通过标准化单位和重新计算回归统计量来重新检查以前对BMR标度的研究。数据集中大型草食动物的比例与比例指数(b,其中BMR = aMb b)和变异系数(CV:ln-ln残差的标准偏差)均呈正相关。因此,包含大型草食动物既会使b膨胀,又会增加计算趋势线周围的变化。这与达到确定BMR所需的吸收后条件所需的快速持续时间有关,并且因为进食后静息MR(RMRpp)峰值与0.75 +/- 0.03(95%CI)的指数成正比。因此,在测量MR时,大型草食动物不太可能吸收后,如果不吸收,则可能具有相对较高的MR。 RMRpp的3/4功率定标是更广泛趋势的一部分,在该趋势中,除冷诱发的最大MR显着例外(b = 0.65 +/- 0.05)外,b与关系的升高呈正相关(MR值越高)缩放比例更大)。因此,运动引起的最大MR(b = 0.87 +/- 0.05)比RMRpp,场MR(b = 0.73 +/- 0.04),热中性静息MR(RMRt,b = 0.712 +/- 0.013)和BMR的缩放幅度更大。该观察结果的含义是,即使污染物相对于Mb随机分布,非基础测量对BMR数据的污染也可能会增加BMR标度指数。因此,可以通过包含不能满足基础代谢要求的测量来人工地增加比例缩放指数,这些测量是严格定义的(成年,非生殖,吸收后动物在非活动的昼夜节律期间处于热中性环境中)。同样,Mb与体温(Tb)之间以及Tb与质量无关的BMR之间存在正相关关系,导致b升高。虽然不是严格的BMR测量条件,但将BMR测量值归一化到普通Tb(36.2摄氏度)以达到标准代谢率(SMR)可以进一步降低关系的CV。显然,指数的值取决于选择数据的条件。真实BMR的指数为0.686(+/- 0.014),Tb归一化SMR为0.675(+/- 0.013),RMRt为0.712(+/- 0.013)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号