...
首页> 外文期刊>The Journal of Experimental Biology >The hydrodynamics of eel swimming: I. Wake structure
【24h】

The hydrodynamics of eel swimming: I. Wake structure

机译:鳗鱼游泳的水动力学:I.唤醒结构

获取原文
获取原文并翻译 | 示例

摘要

Eels undulate a larger portion of their bodies while swimming than many other fishes, but the hydrodynamic consequences of this swimming mode are poorly understood. In this study, we examine in detail the hydrodynamics of American eels (Anguilla rostrata) swimming steadily at 1.4 L s(-1) and compare them with previous results from other fishes. We performed high-resolution particle image velocimetry (PIV) to quantify the wake structure, measure the swimming efficiency, and force and power output. The wake consists of jets of fluid that point almost directly laterally, separated by an unstable shear layer that rolls up into two or more vortices over time. Previously, the wake of swimming eels was hypothesized to consist of unlinked vortex rings, resulting from a phase offset between vorticity distributed along the body and vorticity shed at the tail. Our high-resolution flow data suggest that the body anterior to the tail tip produces relatively low vorticity, and instead the wake structure results from the instability of the shear layers separating the lateral jets, reflecting pulses of high vorticity shed at the tail tip. We compare the wake structure to large-amplitude elongated body theory and to a previous computational fluid dynamic model and note several discrepancies between the models and the measured values. The wake of steadily swimming eels differs substantially in structure from the wake of previously studied carangiform fishes in that it lacks any significant downstream flow, previously interpreted as signifying thrust. We infer that the lack of downstream flow results from a spatial and temporal balance of momentum removal (drag) and thrust generated along the body, due to the relatively uniform shape of eels. Carangiform swimmers typically have a narrow caudal peduncle, which probably allows them to separate thrust from drag both spatially and temporally. Eels seem to lack this separation, which may explain why they produce a wake with little downstream momentum while carangiform swimmers produce a wake with a clear thrust signature.
机译:与其他许多鱼类相比,鳗鱼在游泳时会在其身体中起伏较大的部分,但这种游泳方式对水力造成的后果知之甚少。在这项研究中,我们详细检查了稳定在1.4 L s(-1)游泳的美洲鳗(Anguilla rostrata)的水动力,并将其与其他鱼类的先前结果进行了比较。我们执行了高分辨率粒子图像测速(PIV)以量化尾流结构,测量游泳效率以及力和功率输出。尾流由几乎直接指向侧面的流体射流组成,并由不稳定的剪切层隔开,该剪切层随时间卷成两个或多个涡旋。以前,游泳鳗鱼的尾流被假定为由未链接的涡流环组成,这是由于沿身体分布的涡流与在尾部脱落的涡流之间存在相位偏移造成的。我们的高分辨率流动数据表明,尾尖前方的物体产生相对较低的涡度,而尾流结构则是由于分离侧向射流的剪切层的不稳定性所致,反映了尾尖散发出的高涡度脉冲。我们将尾流结构与大振幅拉长体理论以及先前的计算流体动力学模型进行了比较,并注意到了模型与测量值之间的一些差异。稳定游泳的鳗鱼的尾迹在结构上与先前研究的香兰鱼的尾巴有很大不同,因为它缺乏任何明显的下游流动,以前被认为是指推力。我们推断,由于鳗鱼形状相对均匀,下游流动的缺乏是由于动量去除(阻力)和沿身体产生的推力的时空平衡造成的。 Carangiform游泳者通常具有狭窄的尾柄,这可能使他们在空间和时间上都将推力和阻力分开。鳗鱼似乎缺乏这种分离,这可以解释为什么它们产生尾流时下游动量很小的原因,而伴郎茎状游泳者产生的尾波具有明显的推力特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号