...
首页> 外文期刊>The Journal of Experimental Biology >Timing matters: tuning the mechanics of a muscle-tendon unit by adjusting stimulation phase during cyclic contractions
【24h】

Timing matters: tuning the mechanics of a muscle-tendon unit by adjusting stimulation phase during cyclic contractions

机译:时间问题:在周期性收缩过程中通过调节刺激相位来调整肌腱单元的力学

获取原文
获取原文并翻译 | 示例

摘要

A growing body of research on the mechanics and energetics of terrestrial locomotion has demonstrated that elastic elements acting in series with contracting muscle are critical components of sustained, stable and efficient gait. Far fewer studies have examined how the nervous system modulates muscle-tendon interaction dynamics to optimize 'tuning' or meet varying locomotor demands. To explore the fundamental neuromechanical rules that govern the interactions between series elastic elements (SEEs) and contractile elements (CEs) within a compliant muscle-tendon unit (MTU), we used a novel work loop approach that included implanted sonomicrometry crystals along muscle fascicles. This enabled us to decouple CE and SEE length trajectories when cyclic strain patterns were applied to an isolated plantaris MTU from the bullfrog (Lithobates catesbeianus). Using this approach, we demonstrate that the onset timing of muscle stimulation (i.e. stimulation phase) that involves a symmetrical MTU stretch-shorten cycle during active force production results in net zero mechanical power output, and maximal decoupling of CE and MTU length trajectories. We found it difficult to 'tune' the muscle-tendon system for strut-like isometric force production by adjusting stimulation phase only, as the zero power output condition involved significant positive and negative mechanical work by the CE. A simple neural mechanism - adjusting muscle stimulation phase - could shift an MTU from performing net zero to net positive (energy producing) or net negative (energy absorbing) mechanical work under conditions of changing locomotor demand. Finally, we show that modifications to the classical work loop paradigm better represent in vivo muscle-tendon function during locomotion.
机译:关于地面运动的力学和能量学的研究越来越多,这表明与收缩肌肉串联作用的弹性元件是持续,稳定和高效步态的关键组成部分。很少有研究检查神经系统如何调节肌腱相互作用以优化“调节”或满足变化的运动需求。为了探索控制顺应性肌腱单位(MTU)内一系列弹性元件(SEE)和收缩元件(CE)之间相互作用的基本神经力学规则,我们使用了一种新颖的工作循环方法,该方法包括沿肌肉束植入体测晶体。当将循环应变模式应用于牛蛙(Lithobates catesbeianus)的一个孤立plant足MTU时,这使我们能够解耦CE和SEE长度轨迹。使用这种方法,我们证明了在主动力产生过程中涉及对称MTU拉伸-缩短周期的肌肉刺激的开始时机(即刺激阶段)导致净零机械功率输出以及CE和MTU长度轨迹的最大解耦。我们发现仅通过调整刺激相位就很难“调整”肌腱系统以产生类似支杆的等距力,因为零功率输出条件涉及CE的大量正负机械功。一个简单的神经机制-调节肌肉刺激阶段-可以在运动需求变化的条件下,将MTU从执行净零运动变为净正(产生能量)或净负(吸收能量)机械功。最后,我们显示对经典工作循环范式的修改更好地代表了运动过程中的体内肌肉肌腱功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号