首页> 外文学位 >Linking Form and Function: Frequency-Phase Coupling in Biological Muscle-Tendon Unit, and the Impact of Exoskeleton Assistance.
【24h】

Linking Form and Function: Frequency-Phase Coupling in Biological Muscle-Tendon Unit, and the Impact of Exoskeleton Assistance.

机译:链接的形式和功能:生物肌肉-腱单元中的相位耦合,以及外骨骼辅助的影响。

获取原文
获取原文并翻译 | 示例

摘要

The overall goal of the four studies presented herein is to identify physiological factors (i.e. form) that ultimately govern mechanical behavior at the muscle, joint, and limb level (function), as well as the mechanical and energetic effects of modifying form through the use of passive elastic exoskeletons. This was done using computational and experimental models of vertical hopping.;Computational model of unassisted hopping consisted of a Hill-type muscle model of the triceps surae-Achilles tendon complex working against a gravitational load during cyclic contractions. In chapter 1, we used this model to sweep a 2D parameter space of frequency and magnitude of muscle stimulation centered on the passive resonant frequency (o0) of the modeled biological-inertial system. Results from this study indicate that frequency of stimulation plays a primary role in regulating whole muscle-tendon unit (MTU) dynamics, including phase of stimulation and peak force, average positive power, and apparent efficiency. Stimulation amplitude was primarily responsible for regulating peak active forces, contractile element (i.e. active muscle, CE) and series elastic element (i.e. tendon, aponeurosis, SEE) interaction, and overall metabolic demand. Peak 'tuning' of CE-SEE interaction in this study was observed at driving frequencies just above o0 of the passive MTU system.;Due to known inaccuracies of Hill-type muscle models, chapter 2 replaced the modeled MTU with a biological one from the American bullfrog Rana Catesbeiana, and simulated inertial environments similar to those in chapter 1 on a feedback controlled ergometer. We characterized o 0 by allowing the MTU to oscillate passively against simulated gravitational loads, and drove the muscle contraction via direct nerve stimulation across a range of frequencies centered on o0. We found that a driving frequency of o0 maximized force output, minimized the ratio of CE to MTU work, minimized estimated metabolic demand, and maximized MTU apparent efficiency due to inherent frequency-phase coupling of system dynamics. This study concludes that high level active control are not required to 'tune' muscle tendon interactions if driving frequency matches o0 of the passive biomechanical system.;Computational models of Exo assisted hopping in chapter 3 were developed using the same base model as chapter 1, with the addition of a linear spring in parallel to modeled biological components. By sweeping a 2D parameter space of stimulation amplitude and Exo stiffness at a fixed frequency, we were able to identify trends in observed behavior that mimic human response to Exo assisted hopping. This included constant MTU+Exo stiffness and CE positive power output, reductions in MTU force, SEE energy cycling, MTU apparent efficiency, and metabolic demand, and increases in MTU+Exo efficiency. This model also provided insight into mechanisms underlying metabolic cost minimization and enhanced performance in Exo assisted hopping, and concludes that these outcomes cannot be optimized simultaneously, i.e. one must come at the detriment of the other.;Our final experimental study used a preparation similar to that form Chapter 2, with modified environment controllers that simulated an exoskeleton in parallel with the biological MTU. We used a 'pulsed' rate coding approach to control relative levels of stimulation amplitude, and selected stimulation amplitude-Exo stiffness combinations from chapter 3 that mimicked human response to exoskeleton assistance. In all conditions, the biological MTU was driven at its estimated o0. This study indicates that increased due to an artificially stiffened MTU+Exo system, along with invariant stimulation frequencies, may be a critical factor limiting beneficial response to springy assistance.
机译:本文介绍的四项研究的总体目标是确定最终控制肌肉,关节和四肢水平(功能)的机械行为的生理因素(即形式),以及通过使用改变形式的机械和能量作用被动的弹性外骨骼。这是使用垂直跳变的计算和实验模型完成的。无辅助跳变的计算模型由肱三头肌-跟腱复合体的希尔型肌肉模型在循环收缩过程中抵抗重力载荷组成。在第1章中,我们使用此模型对以建模的生物惯性系统的被动共振频率(o0)为中心的肌肉刺激频率和幅度的二维参数空间进行了扫描。这项研究的结果表明,刺激频率在调节整个肌腱单位(MTU)动力学方面起主要作用,包括刺激阶段和峰值力,平均正功率和视在效率。刺激幅度主要负责调节峰值活动力,收缩成分(即活动肌,CE)和一系列弹性成分(即肌腱,腱膜,SEE)相互作用以及总体代谢需求。在本研究中,CE-SEE相互作用的峰值``调谐''在被动MTU系统的o0上方的驱动频率处观察到;由于已知的希尔型肌肉模型的不准确性,第2章用来自美国牛蛙Rana Catesbeiana,在反馈控制的测力计上模拟了类似于第1章中的惯性环境。我们通过允许MTU在模拟重力载荷下被动振动来表征o 0,并通过直接神经刺激以o0为中心的一系列频率来驱动肌肉收缩。我们发现,由于系统动力学固有的频率-相位耦合,驱动频率为o0可使驱动力输出最大化,CE与MTU功的比率最小,估计代谢需求最小以及MTU表观效率最大化。这项研究得出的结论是,如果驱动频率与被动生物力学系统的o0相匹配,则不需要``高级''主动控制来``调节''肌腱相互作用。;第3章中使用与第1章相同的基本模型开发了Exo辅助跳跃的计算模型。并附加了一个线性弹簧,该线性弹簧与建模的生物组件平行。通过以固定频率扫描刺激幅度和Exo刚度的2D参数空间,我们能够识别观察到的模仿人类对Exo辅助跳跃响应的行为的趋势。这包括恒定的MTU + Exo刚度和CE正功率输出,MTU力减小,SEE能量循环,MTU表观效率和代谢需求以及MTU + Exo效率的增加。该模型还提供了对Exo辅助跳频中代谢成本最小化和增强性能的潜在机制的深刻见解,并得出结论,这些结果不能同时优化,也就是说,一个结果必定会损害另一个结果。构成第2章,使用修改后的环境控制器模拟与生物MTU并行的外骨骼。我们使用“脉冲”速率编码方法来控制刺激幅度的相对水平,并从第3章中选择刺激幅度-Exo刚度组合,以模仿人类对外骨骼辅助的反应。在所有情况下,生物MTU都以其估计的o0驱动。这项研究表明,由于人为地强化了MTU + Exo系统而导致的增加,以及不变的刺激频率,可能是限制对弹性辅助的有益响应的关键因素。

著录项

  • 作者

    Robertson, Benjamin Daniel.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Biomedical engineering.;Robotics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 192 p.
  • 总页数 192
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号