首页> 外文期刊>The Journal of Experimental Biology >Toe function and dynamic pressure distribution in ostrich locomotion
【24h】

Toe function and dynamic pressure distribution in ostrich locomotion

机译:鸵鸟运动中的脚趾功能和动态压力分布

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The ostrich is highly specialized in terrestrial locomotion and is the only extant bird that is both didactyl and exhibits a permanently elevated metatarsophalangeal joint. This extreme degree of digitigrady provides an excellent opportunity for the study of phalangeal adaptation towards fast, sustained bipedal locomotion. Data were gathered in a semi-natural setting with hand-raised, cooperative specimens. Dynamic pressure distribution, centre of pressure (CoP) trajectory and the positional inter-relationship of the toes during stance phase were investigated using pedobarography. Walking and running trials shared a J-shaped CoP trajectory with greater localization of CoP origin as speed increased. Slight variations of 4th toe position in walking affect CoP origin and modulation of 4th toe pressure on the substrate allows correction of balance, primarily at the beginning of stance phase at lower speeds. Load distribution patterns differed significantly between slow and fast trials. In walking, the 3rd and particularly the 4th toe exhibited notable variation in load distribution with minor claw participation only at push-off. Running trials yielded a distinctly triangular load distribution pattern defined by the 4th toe tip, the proximal part of the 3rd toe and the claw tip, with the sharp point of the claw providing an essential traction element at push-off. Consistency of CoP trajectory and load distribution at higher speeds arises from dynamic stability effects and may also reflect stringent limitations to degrees of freedom in hindlimb joint articulation that contribute to locomotor efficiency. This novel research could aid in the reconstruction of theropod locomotor modes and offers a systemic approach for future avian pedobarographic investigations.
机译:鸵鸟在陆上运动方面高度专业化,是唯一既存在双乳糖又具有永久性meta趾关节高位的现存鸟类。这种极高的数字梯度为研究指骨适应快速,持续的双足运动提供了极好的机会。在半自然的环境中收集数据,并手工举起合作样本。使用脚踏气压计研究了站立阶段脚趾的动态压力分布,压力中心(CoP)轨迹以及位置之间的相互关系。步行和跑步试验随着速度的增加,共享了一条J形CoP轨迹,且CoP起源的定位范围更大。步行过程中第四个脚趾位置的轻微变化会影响CoP的形成,并且通过调整基材上第四个脚趾的压力,可以校正平衡,主要是在姿态阶段开始时以较低的速度进行。在慢速试验和快速试验之间,负载分配模式存在显着差异。在步行过程中,第三只脚趾,尤其是第四只脚趾,在负荷分布方面表现出明显的变化,只有在下推时爪的参与很小。行驶试验得出了一个明显的三角形负荷分布模式,该分布由第四个脚趾尖,第三个脚趾的近端部分和爪形尖限定,爪的尖角在推下时提供了基本的牵引力。 CoP轨迹和较高速度下的载荷分布的一致性源自动态稳定性效应,并且还可能反映了后肢关节关节运动自由度的严格限制,这会导致运动效率的提高。这项新颖的研究可能有助于重建兽脚类动物的运动方式,并为将来的鸟类古生物学调查提供系统的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号