首页> 外文期刊>The Journal of Physiology >Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: role of parvalbumin and calbindin D28k.
【24h】

Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: role of parvalbumin and calbindin D28k.

机译:啮齿类动物Purkinje细胞中树突状Ca2 +动力学的突变分析:小白蛋白和钙结合蛋白D28k的作用。

获取原文
获取原文并翻译 | 示例
           

摘要

The mechanisms governing the kinetics of climbing fibre-mediated Ca2+ transients in spiny dendrites of cerebellar Purkinje cells (PCs) were quantified with high-resolution confocal Ca2+ imaging. Ca2+ dynamics in parvalbumin (PV-/-) and parvalbumin/calbindin D28k null-mutant (PV/CB-/-) mice were compared with responses in wild-type (WT) animals. In the WT, Ca2+ transients in dendritic shafts were characterised by double exponential decay kinetics that were not due to buffered Ca2+ diffusion or saturation of the indicator dye. Ca2+ transients in PV-/- PCs reached the same peak amplitude as in the WT but the biphasic nature of the decay was less pronounced, an effect that could be attributed to PV's slow binding kinetics. In contrast, peak amplitudes in PV/CB-/- PCs were about two times higher than in the WT and the decay became nearly monophasic. Numerical simulations indicate that the residual deviation from a single exponential decay in PV/CB-/- is due to saturation of the Ca2+ indicator dye. Furthermore, the simulations imply that the effect of uncharacterised endogenous Ca2+ binding proteins is negligible, that buffered diffusion and dye saturation significantly affects spineous Ca2+ transients but not those in the dendritic shafts, and that neither CB nor PV undergoes saturation in spines or dendrites during climbing fibre-evoked Ca2+ transients. Calbindin's medium-affinity binding sites are fast enough to reduce the peak amplitude of the Ca2+ signal. However, similar to PV, delayed binding by CB leads to biphasic Ca2+ decay kinetics. Our results suggest that the distinct kinetics of PV and CB underlie the biphasic kinetics of synaptically evoked Ca2+ transients in dendritic shafts of PCs.
机译:通过高分辨率共聚焦Ca2 +成像定量控制小脑浦肯野细胞(PCs)的棘突树突中攀登纤维介导的Ca2 +瞬态动力学的机制。将小白蛋白(PV-/-)和小白蛋白/钙结合蛋白D28k空突变(PV / CB-/-)小鼠中的Ca2 +动态与野生型(WT)动物中的响应进行了比较。在野生型中,树突状轴中的Ca2 +瞬变的特征是双指数衰减动力学,这不是由于缓冲的Ca2 +扩散或指示剂染料的饱和所致。 PV-/-PCs中的Ca2 +瞬变达到了与WT中相同的峰值幅度,但是衰减的双相性质并不那么明显,这可能归因于PV的缓慢结合动力学。相比之下,PV / CB-/-PC的峰值幅度大约是WT的两倍,衰减几乎变成单相的。数值模拟表明,PV / CB-/-中单个指数衰减的残留偏差是由于Ca2 +指示剂染料的饱和所致。此外,模拟结果表明,未表征的内源性Ca2 +结合蛋白的影响可忽略不计,缓冲的扩散和染料饱和度显着影响棘突Ca2 +瞬变,但不影响树突状轴中的瞬变,并且CB和PV在攀爬过程中均未在棘突或树突中经历饱和纤维诱发的Ca2 +瞬变。 Calbindin的中等亲和力结合位点足够快,可以降低Ca2 +信号的峰值幅度。但是,类似于PV,CB的延迟结合会导致Ca2 +的双相衰减动力学。我们的结果表明,PV和CB的独特动力学是PC树突状轴突触诱发Ca2 +瞬变的双相动力学的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号