首页> 外文期刊>The Journal of Physiology >Does nitric oxide allow endothelial cells to sense hypoxia and mediate hypoxic vasodilatation? In vivo and in vitro studies.
【24h】

Does nitric oxide allow endothelial cells to sense hypoxia and mediate hypoxic vasodilatation? In vivo and in vitro studies.

机译:一氧化氮能使内皮细胞感觉缺氧并介导缺氧血管舒张吗?体内和体外研究。

获取原文
获取原文并翻译 | 示例
           

摘要

Hypoxia-evoked vasodilatation is a fundamental regulatory mechanism that is often attributed to adenosine. The identity of the O(2) sensor is unknown. Nitric oxide (NO) inhibits endothelial mitochondrial respiration and ATP generation by competing with O(2) for its binding site on cytochrome oxidase. We proposed that in vivo this interaction allows endothelial cells to release adenosine when O(2) tension falls or NO concentration increases. Using anaesthetised rats, we confirmed that the increase in femoral vascular conductance (FVC, hindlimb vasodilatation) evoked by systemic hypoxia is attenuated by NO synthesis blockade with L-NAME, but restored when baseline FVC is restored by infusion of NO donor. This 'restored' hypoxic response, like the control hypoxic response, is inhibited by the adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine. Similarly, the FVC increase evoked by adenosine infusion was attenuated by L-NAME but restored by infusion of NO donor. However, when baseline FVC was restored after L-NAME with 8-bromo-cGMP, the FVC increase evoked by adenosine infusion was restored, but not in response to systemic hypoxia, suggesting that adenosine was no longer released by hypoxia. Infusion of NO donor at a given rate after treatment with L-NAME evoked a greater FVC increase during systemic hypoxia than during normoxia, both responses being reduced by 8-cyclopentyl-1,3-dipropylxanthine. Finally, both bradykinin and NO donor released adenosine from superfused endothelial cells in vitro; L-NAME attenuated only the former response. We propose that in vivo, shear-released NO increases the apparent K(m) of endothelial cytochrome oxidase for O(2), allowing the endothelium to act as an O(2) sensor, releasing adenosine in response to moderate falls in O(2).
机译:缺氧引起的血管舒张是一种基本的调节机制,通常归因于腺苷。 O(2)传感器的身份未知。一氧化氮(NO)通过与O(2)竞争其在细胞色素氧化酶上的结合位点来抑制内皮线粒体呼吸和ATP的产生。我们建议在体内这种相互作用允许内皮细胞释放O(2)张力下降或NO浓度增加时的腺苷。使用麻醉的大鼠,我们证实了系统性缺氧引起的股血管电导(FVC,后肢血管舒张)的增加被L-NAME的NO合成阻滞所减弱,但当通过注入NO供体恢复基线FVC时恢复了。像对照低氧反应一样,这种“恢复的”低氧反应被腺苷A(1)受体拮抗剂8-环戊基-1,3-二丙基黄嘌呤抑制。类似地,腺苷输注引起的FVC增加被L-NAME减弱,但通过NO供体的注入恢复。但是,当使用8-溴-cGMP在L-NAME后恢复基线FVC时,腺苷输注引起的FVC增加得以恢复,但对系统性缺氧没有反应,这表明腺苷不再因缺氧而释放。用L-NAME治疗后,以给定的速度注入NO供体引起的系统性缺氧比正常性缺氧时FVC增加更多,两种反应均被8-环戊基-1,3-二丙基黄嘌呤减少。最后,缓激肽和NO供体在体外都从融合的内皮细胞中释放出腺苷。 L-NAME仅减弱前一个响应。我们建议在体内,剪切释放的NO增加O(2)的内皮细胞色素氧化酶的表观K(m),使内皮充当O(2)传感器,响应O(2)的中等下降而释放腺苷。 2)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号