首页> 外文期刊>The Journal of Physiology >Sodium channels, the electrogenisome and the electrogenistat: Lessons and questions from the clinic
【24h】

Sodium channels, the electrogenisome and the electrogenistat: Lessons and questions from the clinic

机译:钠通道,电动体和电动体:临床上的教训和问题

获取原文
获取原文并翻译 | 示例
       

摘要

In the six decades that have followed the work of Hodgkin and Huxley, multiple generations of neuroscientists and biophysicists have built upon their pivotal contributions. It is now clear that, in mammals, nine genes encode nine distinct voltage-gated sodium channels with different amino acid sequences and different physiological and pharmacological properties. The different sodium channel isoforms produce a multiplicity of distinct sodium currents with different time-dependent characteristics and voltage dependencies, which interact with each other and with the currents produced by other channels (including calcium and potassium channels) to shape neuronal firing patterns. Expression of these sodium channel isoforms is highly dynamic, both in the normal nervous system, and in the injured nervous system. Recent research has shed light on the roles of sodium channels in human disease, a development that may open up new therapeutic strategies. This article examines the pain-signalling system as an example of a neuronal network where multiple sodium channel isoforms play complementary roles in electrogenesis and a strong link with human disease has been established. Recent research suggests that it may be possible to target specific sodium channel isoforms that drive hyperexcitability in pain-signalling neurons, thereby providing new therapeutic strategies for chronic pain, and providing an illustration of the impact of the Hodgkin-Huxley legacy in the clinical domain.
机译:在霍奇金(Hodgkin)和赫x黎(Huxley)工作之后的六十年中,神经科学家和生物物理学家的几代人已经在他们的关键贡献基础上发展。现在很明显,在哺乳动物中,有9个基因编码9个不同的电压门控钠通道,这些通道具有不同的氨基酸序列以及不同的生理和药理特性。不同的钠通道亚型会产生多种不同的钠电流,这些钠电流具有不同的时间依赖性和电压依赖性,它们相互影响并与其他通道(包括钙和钾通道)产生的电流相互作用,从而形成神经元放电模式。这些钠通道亚型的表达在正常神经系统和受损神经系统中都是高度动态的。最近的研究揭示了钠通道在人类疾病中的作用,这一发展可能会开拓新的治疗策略。本文以神经元网络为例,研究了疼痛信号传递系统,其中多个钠通道同工型在电生成中起互补作用,并且已经与人类疾病建立了牢固的联系。最近的研究表明,可能有可能靶向特定的钠通道亚型,该亚型驱动疼痛信号传递神经元的过度兴奋性,从而为慢性疼痛提供新的治疗策略,并说明霍奇金-赫克斯利遗产在临床领域的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号