首页> 外文期刊>The Journal of Physiology >Selective mitochondrial Ca2+ uptake deficit in disease endstage vulnerable motoneurons of the SOD1G93A mouse model of amyotrophic lateral sclerosis
【24h】

Selective mitochondrial Ca2+ uptake deficit in disease endstage vulnerable motoneurons of the SOD1G93A mouse model of amyotrophic lateral sclerosis

机译:肌萎缩性侧索硬化症小鼠SOD1G93A疾病末期易感运动神经元的选择性线粒体Ca2 +摄取不足

获取原文
获取原文并翻译 | 示例
           

摘要

Amyotrophic lateral sclerosis is a progressive neurodegenerative disease that targets some somatic motoneuron populations, while others, e.g. those of the oculomotor system, are spared. The pathophysiological basis of this pattern of differential vulnerability, which is preserved in a transgenic mouse model of amyotrophic lateral sclerosis (SOD1G93A), and the mechanism of neurodegeneration in general are unknown. Hyperexcitability and calcium dysregulation have been proposed by others on the basis of data from juvenile mice that are, however, asymptomatic. No studies have been done with symptomatic mice following disease progression to the disease endstage. Here, we developed a new brainstem slice preparation for whole-cell patch-clamp recordings and single cell fura-2 calcium imaging to study motoneurons in adult wild-type and SOD1G93A mice up to disease endstage. We analysed disease-stage-dependent electrophysiological properties and intracellular Ca2+ handling of vulnerable hypoglossal motoneurons in comparison to resistant oculomotor neurons. Thereby, we identified a transient hyperexcitability in presymptomatic but not in endstage vulnerable motoneurons. Additionally, we revealed a remodelling of intracellular Ca2+ clearance within vulnerable but not resistant motoneurons at disease endstage characterised by a reduction of uniporter-dependent mitochondrial Ca2+ uptake and enhanced Ca2+ extrusion across the plasma membrane. Our study challenged the notion that hyperexcitability is a direct cause of neurodegeneration in SOD1G93A mice, but molecularly identified a Ca2+ clearance deficit in motoneurons and an adaptive Ca2+ handling strategy that might be targeted by future therapeutic strategies.
机译:肌萎缩性侧索硬化症是一种进行性神经退行性疾病,其靶向某些体细胞运动神经元群体,而其他一些例如肌动神经元群体。动眼系统的那些被省掉了。这种差异性易损性模式的病理生理基础(在肌萎缩性侧索硬化症(SOD1G93A)的转基因小鼠模型中得以保留)以及一般的神经退行性机制尚不清楚。其他人已经根据来自幼年小鼠的无症状的数据提出了过度兴奋性和钙调节异常。在疾病进展至疾病末期后,尚未对有症状小鼠进行研究。在这里,我们开发了一种用于全细胞膜片钳记录和单细胞呋喃2钙成像的新型脑干切片制剂,以研究成年野生型和SOD1G93A小鼠直至疾病晚期的运动神经元。我们分析了抗病性动眼神经元与易感性舌下运动神经元的疾病阶段相关的电生理特性和细胞内Ca2 +处理。因此,我们确定了症状前的短暂过度兴奋性,但是在末期易受伤害的运动神经元中没有。此外,我们揭示了疾病末期易损但不是耐药的运动神经元内细胞内Ca2 +清除率的重塑,其特征在于单向依赖性线粒体Ca2 +吸收减少,Ca2 +跨质膜挤出增加。我们的研究挑战了过度兴奋性是SOD1G93A小鼠神经退行性疾病的直接原因的观点,但在分子上确定了运动神经元中Ca2 +清除缺陷和可能是未来治疗策略针对的自适应Ca2 +处理策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号