首页> 外文期刊>The Journal of Physiology >Delayed-rectifier potassium currents and the control of cardiac repolarization: Noble and Tsien 40 years after.
【24h】

Delayed-rectifier potassium currents and the control of cardiac repolarization: Noble and Tsien 40 years after.

机译:整流器钾电流延迟和心脏复极的控制:Noble和Tsien 40年后。

获取原文
获取原文并翻译 | 示例
       

摘要

Following activation by depolarization, all excitable cells undergo repolarizing steps to return the transmembrane potential to the initial resting level (often called the 'resting potential'). In comparison with other excitable cells, cardiac myocytes remain depolarized for substantially greater periods, generating the action potential 'plateau' (Fig. 1A). The unique cardiac action potential plateau permits sufficient transmembrane Ca~(2+) entry into the cell via voltage-gated Ca~(2+) channels to maintain the sarcoplasmic reticulum Ca~(2+) stores needed for effective contraction, which occurs when the sarcoplasmic reticulum releases Ca~(2+) in response to triggering by transmembrane Ca~(2+) entry initiated via cell depolarization. The plateau also keeps Na~+ channels inactivated for a substantial 'refractory period', preventing excessively rapid beating rates during cardiac arrhythmias. Cardiac repolarization is a delicate and highly regulated process, governed by sets of ion channels, pumps and exchangers, -as well as autonomic nervous system modulators (Conrath & Opthof, 2006). If the repolarization process is impaired, cardiac action potentials are prolonged (Fig. 1B). When prolongation becomes exaggerated, voltage-dependent Ca~(2+) currents have sufficient time to recover from the inactivation that occurs at the most depolarized levels of the action potential. The consequent reactivation of plateau Ca~(2+) currents causes abnormal, arrhythmia-generating 'early after-depolarizations'. When repolarization is excessively rapid, action potentials are abbreviated (Fig. 1C), permitting reentrant arrhythmias (a form of 'short-circuiting' of cardiac electrical activity; for a detailed review see Nattel et al. 2007).
机译:在通过去极化激活后,所有可兴奋的细胞都要经历去极化步骤,以使跨膜电位恢复到初始静息水平(通常称为“静息电位”)。与其他兴奋性细胞相比,心肌细胞在更长的时间内保持去极化状态,产生动作电位“平台”(图1A)。独特的心脏动作电位平台允许足够的跨膜Ca〜(2+)通过电压门控的Ca〜(2+)通道进入细胞,以维持有效收缩所需的肌浆网C​​a〜(2+)存储,这种情况发生在肌浆网释放Ca〜(2+),是由于细胞去极化引起的跨膜Ca〜(2+)进入所触发。高原还使Na〜+通道在相当长的“不应期”内保持失活状态,从而防止了心律不齐期间过快的跳动速度。心脏复极化是一个微妙且高度受控的过程,受离子通道,泵和交换器以及植物神经系统调节剂的控制(Conrath&Opthof,2006)。如果复极化过程受损,则心脏动作电位会延长(图1B)。当延长变得夸大时,电压依赖性Ca〜(2+)电流有足够的时间从在动作电位的最去极化水平发生的失活中恢复。随之而来的高原Ca〜(2+)电流的重新激活导致异常的,心律失常的“早期除极后”。当复极过快时,动作电位会被缩写(图1C),从而导致折返性心律不齐(一种“短路”的心脏电活动;有关详细的综述,请参见Nattel等人,2007)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号