首页> 外文期刊>The Journal of Physiology >The electrotonic architecture of the retinal microvasculature: modulation by angiotensin II.
【24h】

The electrotonic architecture of the retinal microvasculature: modulation by angiotensin II.

机译:视网膜微脉管系统的电渗结构:血管紧张素II的调节。

获取原文
获取原文并翻译 | 示例
       

摘要

The capillary/arteriole complex is the key operational unit regulating local perfusion to meet metabolic demand. However, much remains to be learned about how this multi cellular unit is functionally organized. To help address this challenge, we characterized the electrotonic architecture of the retinal microvasculature, which is particularly well adapted for the decentralized control of blood flow. In this study, we quantified the transmission of voltage between pairs of perforated-patch pipettes sealed onto abluminal cells located on microvascular complexes freshly isolated from the adult rat retina. These complexes consisted of capillaries,as well as tertiary and secondary arterioles. Dual recording experiments revealed that voltage spreading axially through a capillary, tertiary arteriole or secondary arteriole is transmitted very efficiently with a decay rate of only approximately 5% per 100 mum. However, the retinal microvasculature is not simply a well-coupled syncytium since we detected significant voltage dissipation with radial abluminal cell-to-endothelium transmission and also at branch points between a capillary and its tertiary arteriole and between tertiary and secondary arterioles. Consistent with capillaries being particularly well-suited for the task of transmitting voltages induced by vasoactive signals, radial transmission is most efficient in this portion of the retinal microvasculature. Dual recordings also revealed that angiotensin II potently inhibits axial transmission. As a functional consequence, the geographical extent of the microvasculature's response to voltage-changing inputs is markedly restricted in the presence of angiotensin. In addition, this effect of angiotensin established that the electrotonic architecture of the retinal microvasculature is not static, but rather, is dynamically modulated by vasoactive signals.
机译:毛细血管/小动脉复合体是调节局部灌注以满足代谢需求的关键操作单元。然而,关于如何在功能上组织该多蜂窝单元还有许多事情要学习。为了帮助解决这一挑战,我们对视网膜微脉管系统的电渗结构进行了表征,特别适合于分散控制血流。在这项研究中,我们量化了从成年大鼠视网膜新鲜分离的位于微血管复合物上的成年细胞密封的成对穿孔膜移液管之间的电压传输。这些复合物由毛细血管以及第三和第二小动脉组成。双重记录实验表明,通过毛细血管,第三小动脉或第二小动脉轴向扩展的电压非常有效地传输,衰减率仅为每100 mum 5%。然而,视网膜微脉管系统不仅是耦合良好的合胞体,因为我们通过径向房室细胞至内皮的传输以及在毛细管与其第三小动脉之间以及第三和第二小动脉之间的分支点检测到了明显的电压耗散。与毛细管特别适合于传输由血管活性信号感应的电压的任务相一致,在视网膜微脉管系统的这一部分中径向传输最有效。双重记录还显示,血管紧张素II可以有效地抑制轴向传递。作为功​​能性结果,在血管紧张素的存在下,微血管对电压变化输入的响应的地理范围受到明显限制。另外,血管紧张素的这种作用确定了视网膜微脉管系统的电渗结构不是静态的,而是由血管活性信号动态调节的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号