...
首页> 外文期刊>The Journal of Physiology >Voltage-dependent and -independent titration of specific residues accounts for complex gating of a ClC chloride channel by extracellular protons.
【24h】

Voltage-dependent and -independent titration of specific residues accounts for complex gating of a ClC chloride channel by extracellular protons.

机译:特定残基的电压依赖性和非依赖性滴定解释了细胞外质子对ClC氯化物通道的复杂门控。

获取原文
获取原文并翻译 | 示例
           

摘要

The ClC transport protein family comprises both Cl(-) ion channel and H(+)/Cl(-) and H(+)/NO(3)(-) exchanger members. Structural studies on a bacterial ClC transporter reveal a pore obstructed at its external opening by a glutamate side-chain which acts as a gate for Cl(-) passage and in addition serves as a staging post for H(+) exchange. This same conserved glutamate acts as a gate to regulate Cl(-) flow in ClC channels. The activity of ClC-2, a genuine Cl(-) channel, has a biphasic response to extracellular pH with activation by moderate acidification followed by abrupt channel closure at pH values lower than approximately 7. We have now investigated the molecular basis of this complex gating behaviour. First, we identify a sensor that couples extracellular acidification to complete closure of the channel. This is extracellularly-facing histidine 532 at the N-terminus of transmembrane helix Q whose neutralisation leads to channel closure in a cooperative manner. We go on to show that acidification-dependent activation of ClC-2 is voltage dependent and probably mediated by protonation of pore gate glutamate 207. Intracellular Cl(-) acts as a voltage-independent modulator, as though regulating the pK(a) of the protonatable residue. Our results suggest that voltage dependence of ClC-2 is given by hyperpolarisation-dependent penetration of protons from the extracellular side to neutralise the glutamate gate deep within the channel, which allows Cl(-) efflux. This is reminiscent of a partial exchanger cycle, suggesting that the ClC-2 channel evolved from its transporter counterparts.
机译:ClC转运蛋白家族包括Cl(-)离子通道和H(+)/ Cl(-)和H(+)/ NO(3)(-)交换子。对细菌ClC转运蛋白的结构研究表明,谷氨酸侧链在其外部开口处阻塞了孔,该孔充当Cl(-)通道的门,此外还充当H(+)交换的中转站。此相同的保守谷氨酸盐充当调节ClC通道中Cl(-)流动的门。 ClC-2的活性,真正的Cl(-)通道,对细胞外pH呈双相反应,并通过中等酸化作用激活,随后在pH值低于约7时突然关闭通道。我们现在研究了这种复合物的分子基础门控行为。首先,我们确定耦合细胞外酸化以完成通道封闭的传感器。这是跨膜螺旋Q的N末端的面向细胞外的组氨酸532,其中和以协作方式导致通道封闭。我们继续表明,ClC-2的酸化依赖性激活是电压依赖性的,并且可能由孔门谷氨酸207的质子化介导。细胞内Cl(-)充当电压无关的调节剂,就像调节pK(a)一样。可质子化的残基我们的结果表明,ClC-2的电压依赖性是由质子从细胞外侧超极化依赖性穿透而产生的,以中和通道内的谷氨酸门,从而允许Cl(-)外排。这使人想起了部分交换器循环,这表明ClC-2通道是从转运蛋白对应物进化而来的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号