...
首页> 外文期刊>The Journal of Physiology >Mode shifts in the voltage gating of the mouse and human HCN2 and HCN4 channels
【24h】

Mode shifts in the voltage gating of the mouse and human HCN2 and HCN4 channels

机译:鼠标和人类HCN2和HCN4通道的电压门控中的模式转换

获取原文
获取原文并翻译 | 示例

摘要

Hyperpolarization-activated, cyclic-nucleotide-gated (HCN) channels regulate pacemaker activity in the heart and the brain. Previously, we showed that spHCN and HCN1 channels undergo mode shifts in their voltage dependences, shifting the conductance versus voltage curves by more than +50 mV when measured from a hyperpolarized potential compared to a depolarized potential. In addition, the kinetics of the ionic currents changed in parallel to these voltage shifts. In the studies reported here, we tested whether slower cardiac HCN channels also display similar mode shifts. We found that HCN2 and HCN4 channels expressed in oocytes from the frog Xenopus laevis do not display the activation kinetic changes that we observed in spHCN and HCN1. However, HCN2 and HCN4 channels display changes in their tail currents, suggesting that these channels also undergo mode shifts and that the conf or matronal changes underlying the mode shifts are due to conserved aspects of HCN channels. With computer modelling, we show that in channels with relatively slow opening kinetics and fast mode-shift transitions, such as HCN2 and HCN4 channels, the mode shift effects are not readily observable, except in the tail kinetics. Computer simulations of sino-atrial node action potentials suggest that the HCN2 channel, together with the HCN1 channel, are important regulators of the heart firing frequency and that the mode shift is an important property to prevent arrhythmic firing. We conclude that although all HCN channels appear to undergo mode shifts - and thus may serve to prevent arrhythmic firing- it is mainly observable in ionic currents from HCN channels with faster kinetics.
机译:超极化激活的环核苷酸门控(HCN)通道调节心脏和大脑中的起搏器活动。以前,我们显示spHCN和HCN1通道在电压依赖性方面发生模式转变,从超极化电势测量到与去极化电势相比,电导率与电压曲线的偏移量超过+50 mV。另外,离子电流的动力学与这些电压偏移平行地变化。在这里报道的研究中,我们测试了较慢的心脏HCN通道是否也显示出相似的模式偏移。我们发现从青蛙非洲爪蟾卵母细胞中表达的HCN2和HCN4通道不显示我们在spHCN和HCN1中观察到的激活动力学变化。但是,HCN2和HCN4通道在其尾电流中显示出变化,表明这些通道也经历了模式转换,并且模式转换背后的conf或母体变化是由于HCN通道的保守方面所致。通过计算机建模,我们显示,在打开动力学相对较慢且模式转换过渡较快的通道(例如HCN2和HCN4通道)中,除了尾部动力学以外,不容易观察到模式转换效果。窦房结动作电位的计算机模拟表明,HCN2通道以及HCN1通道是心脏触发频率的重要调节器,并且模式转换是防止心律不齐触发的重要属性。我们得出的结论是,尽管所有HCN通道似乎都发生了模式转换-从而可以防止心律不齐触发-但主要是在HCN通道的离子流中可以观察到动力学更快的现象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号