首页> 外文期刊>The Journal of the Acoustical Society of America >Pyrotechnic shock response predictions combining statistical energy analysis and local random phase reconstruction
【24h】

Pyrotechnic shock response predictions combining statistical energy analysis and local random phase reconstruction

机译:结合统计能量分析和局部随机相位重建的烟火冲击响应预测

获取原文
获取原文并翻译 | 示例
           

摘要

Numerous pyrotechnic devices are used on satellites to separate structural subsystems, deploy appendages,and activate on-board operating subsystems. The firing of these pyrotechnic mechanisms leads to severe impulsive loads which could sometimes lead to failures in electronic systems. The objective of the present investigation is to assess the relevance of a method combining deterministic calculations and statistical energy analysis to predict the time overall shock environment of electronic equipment components. The methods are applied to the low- and high-frequency ranges, respectively, which may be defined using a modal parameter based on the effective transmissibility. Initially, in order to address the problem of the low-frequency content of the mechanical shock pulse, the linear dynamic response of the equipment was calculated using direct time integration of a finite element model of the structure. The inputs in the form of the accelerations measured in all three directions at each of the four bolted interfaces were injected into the model. The high-frequency content of the shock response is taken into account by considering the intrinsic dynamic filtering of the equipment. This frequency filter magnitude is extrapolated from the transfer function given by statistical energy analysis between the different imposed accelerations and the response accelerations. Their associated phases are synthesized by considering pseudo-modal phase variations around the group velocity of the structural flexural waves. Combining the effects of the high-frequency filter outputs and the low-frequency finite element calculations yields good predictions of the equipment shock time response over the whole frequency range of interest.
机译:卫星上使用了许多烟火设备来分离结构子系统,部署附属物并激活机载操作子系统。这些烟火机构的点火会导致严重的脉冲负载,有时可能会导致电子系统出现故障。本研究的目的是评估将确定性计算与统计能量分析相结合的方法的相关性,以预测电子设备组件的整体撞击时间。这些方法分别应用于低频和高频范围,可以使用基于有效透射率的模态参数来定义这些方法。最初,为了解决机械冲击脉冲的低频成分问题,使用结构的有限元模型的直接时间积分来计算设备的线性动态响应。在四个螺栓接口中的每个方向上在所有三个方向上测量的加速度形式的输入被注入到模型中。通过考虑设备的固有动态滤波来考虑冲击响应的高频成分。该频率滤波器的幅度是根据不同的施加加速度和响应加速度之间的统计能量分析给出的传递函数推断出来的。通过考虑围绕结构挠曲波群速度的伪模态相位变化来合成它们的相关相位。将高频滤波器输出的影响与低频有限元计算相结合,可以很好地预测整个目标频率范围内设备的冲击时间响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号