首页> 外文期刊>The Journal of the Acoustical Society of America >Boundary perturbation methods for high-frequency acoustic scattering: Shallow periodic gratings
【24h】

Boundary perturbation methods for high-frequency acoustic scattering: Shallow periodic gratings

机译:高频声散射的边界摄动方法:浅周期光栅

获取原文
获取原文并翻译 | 示例
           

摘要

Despite significant recent advances in numerical methodologies for simulating rough-surface acoustic scattering, their applicability has been constrained by the limitations of state-of-the-art computational resources. This has been particularly true in high-frequency applications where the sheer size of the full-wave simulations render them impractical, and engineering processes must therefore rely on asymptotic models [e.g., Kirchhoff approximation (KA)]. However, the demands for high precision can make the latter inappropriate, thus efficient, error-controllable methodologies must be devised. This paper presents a computational strategy that combines the virtues of rigorous solvers (error control) with those of high-frequency asymptotic models (frequency-independent computational costs). These methods are based on high-order "boundary perturbations," which display high precision and unparalleled efficiency. This is accomplished by incorporating asymptotic phase information to effect a significant decrease in computational effort, simultaneously retaining the full-wave nature of the approach. The developments of this contribution are constrained to configurations that preclude multiple scattering; it is further explained how the schemes can be made applicable to general scattering scenarios, though implementation details are left for future work. Even for single-scattering configurations, the approach presented here gives significant gains in accuracy when compared to asymptotic theories (e.g., KA) with modest additional computational cost.
机译:尽管最近在模拟粗糙表面声散射的数值方法方面取得了重大进展,但它们的适用性受到了最新计算资源的限制。这在高频应用中尤其如此,因为全波模拟的绝对大小使它们不切实际,因此工程过程必须依靠渐近模型[例如,基尔霍夫近似(KA)]。但是,对高​​精度的要求可能会使后者不合适,因此必须设计出有效的,可错误控制的方法。本文提出了一种计算策略,将严格的求解器(错误控制)的优点与高频渐近模型的优点(与频率无关的计算成本)相结合。这些方法基于高阶“边界摄动”,显示出高精度和无与伦比的效率。通过合并渐进相位信息以显着减少计算工作量,同时保留该方法的全波特性,可以实现这一点。这种贡献的发展仅限于防止多重散射的构型。进一步说明了如何使这些方案适用于一般的散射场景,尽管实现细节留待以后的工作。即使对于单散射配置,与渐进理论(例如KA)相比,此处提出的方法在准确性上也有显着提高,并且计算成本较低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号