首页> 外文期刊>The journal of trauma and acute care surgery >Steady-state and time-dependent thermodynamic modeling of the effect of intravenous infusion of warm and cold fluids.
【24h】

Steady-state and time-dependent thermodynamic modeling of the effect of intravenous infusion of warm and cold fluids.

机译:稳态和时间相关的热力学模型,用于冷热流体的静脉输注效果。

获取原文
获取原文并翻译 | 示例
           

摘要

Hypothermia results in vital sign lability, coagulopathy, wound infections, and other sequelae. Normothermia can be restored by several modalities, including passive blanket heating, warm forced-air devices, and active fluid warming (AFW). In AFW, intravenously administered fluids are heated to 40 to 45 °C to minimize net thermal losses and to raise body temperature. Clinical studies have demonstrated the efficacy of AFW as part of a strategy encompassing several methods, but the isolated contribution of AFW to warming has not been theoretically examined in detail.A calorimetric model is derived to determine the functional dependence of warming on patient weight, hypothermia severity, infusion temperature, and volume infused. A second heat transfer model is derived to describe the time-dependent temperature changes of the periphery and core after warmed-fluid infusion.There is an inverse linear relationship between the patient's initial temperature and the amount of warming achieved with a given volume. In contrast, as the temperature of the infusion approaches the desired final temperature, the volume required for a fixed temperature change increases nonlinearly. For weight-based boluses, the temperature change scales appropriately with patient mass. Infusion of 2 L of room-temperature crystalloid results in a decrease in body temperature of approximately one-third degree Celsius in the average normothermic adult. For the heat transfer model, previously reported rates of temperature drop and recovery after the intravenous infusion of cold fluids are qualitatively reproduced with a blood mixing time of approximately 15 minutes.Our calculations reveal that AFW has a larger measurable beneficial effect for patients with more severe hypothermia, but true rewarming of the patient with AFW alone would require prohibitively large fluid volumes (more than 10 L of 40 °C fluid) or dangerously hot fluid (20 mL/kg of 80 °C fluid for a 1 °C increase). The major beneficial effect of AFW is the prevention of further net heat loss.
机译:体温过低会导致生命体征不佳,凝血障碍,伤口感染和其他后遗症。可以通过多种方式恢复正常体温,包括被动毯加热,暖风设备和主动流体加热(AFW)。在AFW中,将静脉注射的液体加热到40至45°C,以最大程度地减少净热损失并提高体温。临床研究表明,AFW作为包含多种方法的策略的一部分是有效的,但从理论上尚未详细研究AFW对升温的孤立作用,并导出了量热模型来确定升温对患者体重,体温的功能依赖性。严重程度,输注温度和输注量。推导了第二种传热模型来描述温热流体输注后周围和核心随时间的温度变化,患者的初始温度与给定体积下达到的温升量之间呈反线性关系。相反,随着输液温度接近所需的最终温度,固定温度变化所需的体积非线性增加。对于基于体重的推注,温度变化会根据患者的体重适当调整。输注2 L的室温晶体会导致正常体温正常成年人的体温下降约三分之一摄氏度。对于传热模型,定性地复制了先前报道的静脉输注冷流体后的温度下降和恢复速率,血液混合时间约为15分钟。我们的计算表明,AFW对重症患者具有更大的可衡量的有益作用体温过低,但仅对AFW患者进行真正的热疗将需要大量的液体(超过10 L的40°C液体)或危险的高温液体(每20 kg / kg的80°C液体会使温度升高1°C)。 AFW的主要好处是可以防止进一步的净热损失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号