首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Electron-Beam-Induced Damage of Alkanethiolate Self-Assembled Monolayers (SAMs): Dependence on Monolayer Structure and Substrate Conductivity
【24h】

Electron-Beam-Induced Damage of Alkanethiolate Self-Assembled Monolayers (SAMs): Dependence on Monolayer Structure and Substrate Conductivity

机译:电子束引起的硫代烷烃自组装单分子膜(SAMs)的损伤:对单分子膜结构和基质电导率的依赖

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We report the first studies of the relative importance of substrate conductivity and monolayer structure on the electron-beam-induced damage of alkanethiolate self-assembled monolayers (SAMs) adsorbed on Au and GaAs(001) using time-of-flight secondary-ion mass spectrometry. The results clearly show that the extent of damage observed is strongly dependent on the electrical conductivity of the substrate; at a given electron dose, the amount of degradation is greatest for SAMs adsorbed on the least conductive substrate, semi-insulating GaAs(001). This is because there is a buildup of static charge at the substrate/SAM interface, whereas for an electrically conductive substrate, electrons can be conducted away from the surface, leading to less electron-beam-induced damage. The monolayer structure also greatly affects the amount of electron beam damage. Disordered SAMs, such as nonanethiol adsorbed on Au, undergo more degradation at a given electron dose than ordered SAMs, such as octadecanethiol (ODT) adsorbed on Au. Comparison of the data for undecanethiol (UDT) on conducting GaAs, a disordered SAM, and ODT on semi-insulating GaAs, an ordered SAM, suggests that the detailed 2D monolayer structure plays a more important role than the electrical conductivity of the substrate in determining the extent of electron-beam-induced damage. In addition, differences in the detailed structure of SAMs on Au and GaAs affect the reaction pathways observed. These findings explain previously reported results that much higher electron beam doses are required to damage SAMs on metals compared with SAMs adsorbed on semiconductors and insulators.
机译:我们报告了使用电离飞行时间二次离子质量对底物电导率和单层结构对电子束诱导的链烷硫醇自组装单层(SAMs)吸附在Au和GaAs(001)上的损伤的相对重要性的首次研究光谱法。结果清楚地表明,观察到的损坏程度在很大程度上取决于基片的电导率。在给定的电子剂量下,对于吸附在导电性最低的衬底上的SAM(半绝缘GaAs(001)),降解量最大。这是因为在基板/ SAM界面处会积聚静电荷,而对于导电基板,电子可以从表面传导出去,从而减少了电子束引起的损坏。单层结构也极大地影响了电子束的破坏量。在给定的电子剂量下,无序SAM(例如吸附在Au上的壬烷硫醇)比有序SAM(例如在Au上吸附的十八烷硫醇(ODT))经历更多的降解。比较导电GaAs(无序SAM)上的十一烷硫醇(UDT)和半绝缘GaAs(有序SAM)上的ODT的数据表明,详细的2D单层结构比衬底的电导率起着更重要的作用。电子束引起的损坏程度。另外,Au和GaAs上SAM的详细结构的差异会影响观察到的反应路径。这些发现解释了以前报道的结果,即与吸附在半导体和绝缘体上的SAM相比,要破坏金属上的SAM需要更高的电子束剂量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号