...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Muon Spin Relaxation Studies of Lithium Nitridometallate Battery Materials: Muon Trapping and Lithium Ion Diffusion
【24h】

Muon Spin Relaxation Studies of Lithium Nitridometallate Battery Materials: Muon Trapping and Lithium Ion Diffusion

机译:氮化金属锂电池材料的μon自旋弛豫研究:μon陷获和锂离子扩散

获取原文
获取原文并翻译 | 示例
           

摘要

Lithium nitride has a unique layered structure and the highest reported Li~+ ion conductivity for a crystalline material, The conductivity is highly anisotropic, with an intralayer contribution within the graphitic [L12N] planes dominant at ambient temperature. In this paper transverse- and zero-field muon spin relaxation (μSR) studies on Li3N and two novel paramagnetic derivatives Li_(3-x-y)Ni_xN with x= 0.36 and 0.57 are reported, these new materials have potential as anodes in rechargeable lithium batteries. The decrease in the muon depolarization rate observed above 180 K for the three materials is shown to arise from motional narrowing due to intralayer Li~+ diffusion. The increase in the measured activation energy with×for Li_(3-x-y)Ni_xN suggests that the reduction in the layer spacing that results at high substitution levels is responsible for raising the energy barrier to Li~+ jumps, despite the concomitant expansion of the [Li2N] plane. In addition, the onset of interlayer diffusion appears at lower temperatures in Ni-substituted derivatives than in the parent Li3N. The muons themselves are quasi-static, most probably located in a 4h site between the [Li2N] plane and the Li(1)/ Ni layer. This is similar to the Li~+ interstitial position identified by molecular dynamics simulations as an intermediate for an exchange mechanism for interlayer diffusion. Finally, μSR gives no evidence for the formation of the muonium equivalent of the hydrogen defects thought to play an important role in intralayer diffusion in Li3N. These results demonstrate that μSR can be used to obtain diffusion coefficients and activation energies for Li~+ transport even in paramagnetic materials where NMR studies are complicated by strong interactions with the electronic moments.
机译:氮化锂具有独特的层状结构,并且对于结晶材料具有最高的报道的Li〜+离子电导率。电导率是高度各向异性的,在环境温度下,石墨[L12N]平面内的层内作用占主导。本文对Li3N和两个新颖的顺磁导数Li_(3-xy)Ni_xN的x = 0.36和0.57进行了横场和零场μ自旋弛豫(μSR)研究,这些新材料具有可充电锂电池作为阳极的潜力。三种材料在180 K以上观察到的μon去极化率降低,是由于层内Li〜+扩散引起的运动变窄引起的。 Li_(3-xy)Ni_xN的测量活化能随x的增加而增加,表明尽管取代基伴随扩展,但高取代水平导致的层间距减小仍可提高Li〜+跃迁的能垒。 [Li2N]平面。另外,与母体Li 3 N相比,Ni取代的衍生物在较低的温度下出现层间扩散的开始。介子本身是准静态的,最有可能位于[Li2N]平面和Li(1)/ Ni层之间的4h位置。这类似于通过分子动力学模拟确定的Li〜+间隙位置,作为中间层扩散交换机制的中间产物。最后,μSR没有提供证据证明氢缺陷的mu当量的形成被认为在Li3N的层内扩散中起重要作用。这些结果表明,即使在NMR研究由于与电子矩的强相互作用而复杂化的顺磁性材料中,μSR仍可用于获得Li +传输的扩散系数和活化能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号