...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >NO-C2H4 Reactions on the Surface of Stepped Pt(332)
【24h】

NO-C2H4 Reactions on the Surface of Stepped Pt(332)

机译:阶梯状Pt(332)表面的NO-C2H4反应

获取原文
获取原文并翻译 | 示例
           

摘要

NO-C2H4 interactions on the surface of stepped Pt(332) have been studied using Fourier transform infrared reflection-absorption spectroscopy (FTIR-RAS) and thermal desorption spectroscopy (TDS). IR data show that pre-dosed C2H4 molecules suppress the adsorption of NO on the surface of Pt(332) to an extent depending on both C2H4 coverage and the temperatures to which C2H4 pre-adlayers are annealed. At 90 K, the adsorption of NO on step sites is significantly suppressed by C2H4 following exposures greater than 0.32 L. This site-blocking effect persists and is even enhanced when annealing C2H4 pre-adlayers to 200 K, a temperature at which the adsorbed C2H4 molecules are not dissociated. As annealing temperatures are increased beyond 260 K, an ethylidyne species forms and is located on terraces. Consequently, the adsorption of NO on step sites is restored but to an extent smaller than that on a clean Pt(332) surface. The IR spectra also indicate that there are no detectable intermediates resulting from direct chemical reactions between NO and C2H4/C2H4-derived hydrocarbons, which can promote N2 production. The co-adsorption of C2H4- and C2H4-derived hydrocarbons does significantly promote N2 desorption, being dependent on the temperatures to which pre-dosed C2H4 adlayers are annealed. Annealing C2H4 adlayers to temperatures <300 K significantly enhances N2 desorption at temperatures below 400 K, giving rise to a peak at about 340-380 K. This low-temperature N2 desorption disappears completely after annealing the C2H4 adlayers to >350 K. N2 desorption at ~460 K appears to be slightly enhanced. NO dissociation is the rate-limiting step in the reduction of NO by C2H4-and C2H4-derived hydrocarbons. The contribution of C2H4- and C2H4-derived hydrocarbons to N2 desorption is mainly attributed to 1) weakening of N-O bonds through an electron-donation effect; and 2) providing a source of reductants, i.e., H, CH_X, C_2H_X, and even C, which react with the atomic O from NO dissociation, leaving the surface with more vacant sites for further NO dissociation. The generation of CH_x and C_2H_x therefore plays a central role in the NO reduction mechanism.
机译:已使用傅立叶变换红外反射吸收光谱(FTIR-RAS)和热解吸光谱(TDS)研究了阶梯状Pt(332)表面上的NO-C2H4相互作用。红外数据表明,预先添加的C2H4分子在一定程度上抑制了NO在Pt(332)上的吸附,具体取决于C2H4的覆盖范围和C2H4预加层的退火温度。在90 K下,暴露于大于0.32 L的C2H4会显着抑制NO在台阶部位的吸附。这种位阻作用持续存在,甚至在将C2H4预涂层退火至200 K(吸附的C2H4的温度)时甚至会增强。分子未解离。当退火温度增加到超过260 K时,会形成乙炔,并位于露台上。因此,NO在台阶部位上的吸附得以恢复,但程度小于在干净的Pt(332)表面上的吸附程度。红外光谱还表明,NO和C2H4 / C2H4衍生的烃之间没有直接的化学反应,没有可检测的中间体,这些中间体可以促进N2的产生。 C2H4和C2H4衍生的烃的共吸附确实会显着促进N2的解吸,这取决于预先添加的C2H4涂层退火的温度。将C2H4吸附层退火至<300 K的温度可显着增强低于400 K的温度下的N2解吸,从而在约340-380 K处出现一个峰值。在将C2H4吸附层退火至> 350 K之后,这种低温N2的解吸作用完全消失。 〜460 K时似乎略有增强。 NO离解是C2H4和C2H4衍生的烃类还原NO的限速步骤。 C2H4和C2H4衍生的烃对N2解吸的贡献主要归因于1)通过电子给体效应削弱N-O键; 2)提供还原剂,即H,CH_X,C_2H_X甚至C,它们与NO分解产生的原子O发生反应,使表面上有更多的空位以进一步NO分解。因此,CH_x和C_2H_x的生成在NO还原机制中起着核心作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号