首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >A Computational Study on the Adsorption Configurations and Reactions of Phosphorous Acid on TiO2 Anatase (101) and Rutile (110) Surfaces
【24h】

A Computational Study on the Adsorption Configurations and Reactions of Phosphorous Acid on TiO2 Anatase (101) and Rutile (110) Surfaces

机译:磷酸在锐钛矿型(101)和金红石型(110)表面的吸附构型和反应的计算研究

获取原文
获取原文并翻译 | 示例
       

摘要

We report the result of a density functional theory study on the adsorption and decomposition pathways of phosphorous acid (H3PO3) on TiO2 anatase (101) and rutile (110) surfaces. The most stable adsorption structure for H3PO3 and its isomer, HP(O)(OH)2, is a monodentate adsorption mode for the anatase surface with calculated adsorption energies 23.5 and 38:5 kcal/mol and a bidentate adsorption mode for rutile surface with 26.7 and 36.6 kcal/mol. The mechanisms for the surface reactions of these species have been explicitly elucidated with the computed potential energy surfaces. The barriers for the stepwise H3PO3 H-migration to two nearby bridged O atoms reactions on anatase leads to Ti-OP(OH)O-Ti(a) + 2H-O_b(a) with 7.9 and 6.8 kcal/mol barriers. Even lower activation barriers (1.3 and 2.9 kcal/mol) have been obtained on the rutile (110) surface for the same bond breaking modes. The intermediate Ti-OP(OH)O-Ti(a) thus formed on both surfaces can further decompose via two distinct pathways through H-migration to the P atom and H2O ehmination to produce Ti-OP(H)(O)O-Ti(a) and Ti-OPO-Ti(a), respectively. In addition, we have calculated the adsorption and reactions of the dimer of H3PO3 on both surfaces. The most noticeable difference occurs in the energy levels of the H3PO3 reactions on the anatase and rutile surfaces, with the rutile being more reactive than the anatase surface. The predicted adsorption energies show that Ti-OP(OH)O-Ti(a) with two hydrogen atoms on bridged surface oxygen atoms is 47.1 kcal/mol for anatase and 42.4 kcal/mol for rutile; both are low when compared with the Ti-OB(OH)O-Ti(a) on the same surfaces, 140.1 and 134.6 kcal/mol, respectively. Our density of states analysis shows that OB(OH)O has a larger overlap with the TiO2 surface than OP(OH)O has, favoring the former's charge transfer efficiency.
机译:我们报告了密度泛函理论研究结果的亚磷酸(H3PO3)在TiO2锐钛矿(101)和金红石(110)表面的吸附和分解途径。 H3PO3及其异构体HP(O)(OH)2的最稳定的吸附结构是锐钛矿表面的单齿吸附模式,其计算的吸附能为23.5和38:5 kcal / mol,金红石表面的双齿吸附模式为26.7和36.6 kcal / mol。这些物种的表面反应机理已通过计算出的势能面得到了明确阐明。 H3PO3 H逐步迁移到锐钛矿上两个附近的桥接O原子反应的势垒导致Ti-OP(OH)O-Ti(a)+ 2H-O_b(a)势垒为7.9和6.8 kcal / mol。对于相同的键断裂模式,在金红石(110)表面上甚至获得了更低的活化势垒(1.3和2.9 kcal / mol)。这样在两个表面上形成的中间Ti-OP(OH)O-Ti(a)可以通过两个不同的途径进一步分解,即通过H迁移到P原子和H2O胺化生成Ti-OP(H)(O)O- Ti(a)和Ti-OPO-Ti(a)。此外,我们还计算了H3PO3二聚体在两个表面上的吸附和反应。最明显的差异发生在锐钛矿和金红石表面上的H3PO3反应的能级上,金红石比锐钛矿表面更具反应性。预测的吸附能表明,在桥接的表面氧原子上带有两个氢原子的Ti-OP(OH)O-Ti(a)对锐钛矿为47.1 kcal / mol,对金红石为42.4 kcal / mol。与同一表面上的Ti-OB(OH)O-Ti(a)相比,两者均较低,分别为140.1和134.6 kcal / mol。我们的状态密度分析表明,OB(OH)O与TiO2表面的重叠比OP(OH)O具有的重叠大,这有利于前者的电荷转移效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号