首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Real-Time Propagation of the Reduced One-Electron Density Matrix in Atom-Centered Orbitals: Application to Electron Injection Dynamics in Dye-Sensitized TiO2 Clusters
【24h】

Real-Time Propagation of the Reduced One-Electron Density Matrix in Atom-Centered Orbitals: Application to Electron Injection Dynamics in Dye-Sensitized TiO2 Clusters

机译:减少的单电子密度矩阵在原子中心轨道中的实时传播:染料敏化的TiO2团簇在电子注入动力学中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

The ultrafast electron-transfer (ET) processes in three dye-sensitized TiO2 systems (pycooh—, catechol—, and alizarin—) are studied by using the real-time time-dependent density functional theory (RT-TDDFT). TiO2 cluster models are used to substitute TiO2 nanocrystals in order to check the quantum size effect on ET. The initial-state geometrical optimization for the individual constituents and coupled systems and the subsequent calculations for IR spectra and the density of states (DOS) are performed at the B3LYP/Lanl2dz theory level. The calculated IR spectra, the DOS, and the low-lying excited states reveal that the couplings between three dyes and TiO2 clusters are very strong so that an ultrafast electron injection from the excited dyes to TiO2 clusters is favored. By following the electronic motion of coupled systems after the photoexcitation of adsorbates in real time without allowing the nuclei to move, we predict an electronic injection time of a few femtoseconds for the present finite systems, which is slightly longer than the experimental measurements and other theoretical predications for the ET time on the same dye-sensitized bulk TiO2 systems due to the small clusters used in our simulation. We find that the ET time is appreciably dependent on the cluster size when the cluster is quite small. However, the size effects on ET time reduce dramatically as the cluster size reaches to a moderate middle size, for example, (TiO2)_(14). The electron—nuclear coupled movement does not play a significant role in the initial ET process in these three systems. The effects of different initial excited states on electronic dynamics are also discussed.
机译:通过使用实时时变密度泛函理论(RT-TDDFT),研究了三种染料敏化的TiO2系统(pycooh-,儿茶酚-和茜素-)中的超快电子转移(ET)过程。为了检查量子尺寸对ET的影响,使用TiO2团簇模型替代TiO2纳米晶体。在B3LYP / Lan12dz理论水平上执行了单个成分和耦合系统的初始状态几何优化以及红外光谱和状态密度(DOS)的后续计算。计算得出的红外光谱,DOS和低激发态表明,三种染料与TiO2团簇之间的耦合非常强,因此从激发染料到TiO2团簇的超快电子注入是有利的。通过在吸附剂进行光激发后实时跟踪耦合系统的电子运动,而不让原子核移动,我们可以预测当前有限系统的电子注入时间为几飞秒,这比实验测量值和其他理论值稍长由于我们的模拟中使用的簇很小,因此在相同的染料敏化的大体积TiO2系统上对ET时间的预测。我们发现,当簇很小时,ET时间明显取决于簇的大小。但是,随着团簇尺寸达到中等中等尺寸,例如(TiO2)_(14),尺寸对ET时间的影响将大大降低。在这三个系统中,电子-核耦合运动在初始ET过程中不起重要作用。还讨论了不同初始激发态对电子动力学的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号