...
首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >In Search of the Inverted Region: Chromophore-Based Driving Force Dependence of Interfacial Electron Transfer Reactivity at the Nanocrystalline Titanium Dioxide Semiconductor/Solution Interface
【24h】

In Search of the Inverted Region: Chromophore-Based Driving Force Dependence of Interfacial Electron Transfer Reactivity at the Nanocrystalline Titanium Dioxide Semiconductor/Solution Interface

机译:寻找反向区域:纳米晶体二氧化钛半导体/溶液界面上基于发色团的界面电子转移反应性的驱动力依赖性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Intentional variations of the driving force for back electron transfer from titanium dioxide to a surface-bound redox couple, via synthetic alteration of the couple's formal potential, show that the reaction takes place in the Marcus normal region; i.e., rates become faster as the driving force increases. Variable-temperature rate measurements show that back ET is thermally activated, with the activation barrier decreasing with increasing driving force, as expected for a normal region process. The observation of normal region behavior, despite the existence of overall reaction driving forces that significantly exceed the likely reorganization energy, is attributed to the occurrence of a sequential electron- and proton-transfer process. The sequential process yields a driving force for the rate-determining electron-transfer step that is considerably smaller than the overall reaction driving force. The sequential electron- and proton-transfer mechanism also provides an explanation for the pH independence of the back-ET kinetics. Variable-temperature rate measurements additionally point toward a high degree of nonadiabaticity-3-5 orders of magnitude of rate attenuation due solely to inefficient electronic coupling. The physical basis for the effect presumably is in the need to traverse eight bonds, some of them saturated, in the back-ET process. Together with the barrier activation effects, the reaction nonadiabaticity accounts for the slow rates for back ET (ca. 10~7 s~(-1)) and, therefore, much of the ability of metal-to-ligand charge-transfer type chromophores to function effectively as sensitizers in TiO_2-based photoelectrochemical cells. The findings also suggest that more efficient cells could be constructed by extending the chemical linkage between the dye and semiconductor and by further decreasing the driving force for the back-ET process.
机译:反向电子从二氧化钛转移到表面结合的氧化还原对的驱动力的有意变化,是通过该对形式势的合成改变,表明该反应发生在Marcus正常区域。即,随着驱动力的增加,费率变得更快。可变温度速率测量表明,背面ET被热激活,激活势垒随驱动力的增加而减小,这是正常区域过程所期望的。尽管存在总的反应驱动力大大超过可能的重组能,但是观察到的正常区域行为归因于顺序的电子和质子转移过程的发生。顺序过程产生了用于速率确定电子转移步骤的驱动力,该驱动力大大小于总反应驱动力。顺序的电子和质子转移机理也为反向ET动力学的pH无关性提供了解释。可变温度速率测量还指向高度非绝热-3-5个数量级的速率衰减,这完全是由于无效的电子耦合引起的。这种效应的物理基础大概是需要在反向ET过程中穿越八个键,其中一些键已经饱和。再加上势垒激活效应,反应的非绝热性导致背向ET的缓慢速率(约10〜7 s〜(-1)),因此,是金属-配体电荷转移型生色团的大部分能力在基于TiO_2的光电化学电池中有效用作敏化剂。研究结果还表明,可以通过扩展染料与半导体之间的化学键并进一步降低反ET过程的驱动力来构建更高效的电池。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号