首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Spatiotemporal Step Patterns during Crystal Growth in a Transport-Controlled System
【24h】

Spatiotemporal Step Patterns during Crystal Growth in a Transport-Controlled System

机译:运输控制系统中晶体生长过程中的时空阶梯图案

获取原文
获取原文并翻译 | 示例
           

摘要

We aim at insight into the unsteady kinetics and the formation of spatiotemporal patterns of steps during the crystal growth in systems, in which the growth rate is controlled by the rate of supply of material. For this, we apply phase-shifting interferometry tot he crystallization of the protein ferritin. We find that the locally measured growth rate, step density and step velocity fluctuate by up to 80-100% of their average values. The fluctuations are due to passage of step bunches generated at the facet edges due to unsteady surface nucleation. The fluctuation amplitudes decrease with higher supersaturation and larger crystal size, as well a with increasing distance from the step sources, even while the average value of local slope, a destabilizing factor, increase. Since size and supersaturation are parameters affecting the solute supply field, we conclude that fluctuations are rooted in the coupling of the interfacial processes of growth to the bulk transport in the solution. To understand the counterintuitive suppression of the instability, we analyzed the step velocity dependence on local slope and found only a very weak interaction between the steps, likely due to competition for supply from the solution. Accordingly, the step bunches propagate with the same velocity as elementary steps. We conclude that in transport-controlled systems with noninteracting or weakly interacting steps the stable growth mode is that via equidistant step trains, the randomly arising step bunches decays. Stronger step interactions may reverse this conclusion, or slow the rate, at which step bunches decay and stability is reached.
机译:我们旨在洞察系统中晶体生长过程中的非稳态动力学和台阶的时空模式的形成,其中生长速率由材料的供应速率控制。为此,我们将相移干涉术应用于蛋白质铁蛋白的结晶。我们发现,本地测量的增长率,阶跃密度和阶跃速度最多波动其平均值的80-100%。该波动是由于不稳定的表面成核作用而在小面边缘处产生的台阶束通过所致。波动幅度随较高的过饱和度和较大的晶体尺寸以及与阶跃源的距离的增加而减小,即使局部斜率的平均值(不稳定因素)也增大。由于大小和过饱和度是影响溶质供应场的参数,因此我们得出结论,波动的根源在于界面生长过程与溶液中整体运输的耦合。为了理解对不稳定性的反直觉抑制,我们分析了阶跃速度对局部斜率的依赖性,并发现阶跃之间的相互作用非常弱,这很可能是由于对解决方案的竞争。因此,台阶束以与基本台阶相同的速度传播。我们得出的结论是,在具有非相互作用或弱相互作用步骤的运输控制系统中,稳定的增长模式是通过等距的步列,随机出现的步束衰减。较强的阶跃相互作用可能会逆转该结论,或减慢速率,在此速率下束会衰减并达到稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号