首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Charge-Transfer and Non-Charge-Transfer Processes Competing in the Sensitization of Singlet Oxygen: Formation of O_2(~1Σ_g~+), O_2(~1Δ_g), and O_2(~3Σ_g~-) during Oxygen Quenching of Triplet Excited Naphthalene Derivatives
【24h】

Charge-Transfer and Non-Charge-Transfer Processes Competing in the Sensitization of Singlet Oxygen: Formation of O_2(~1Σ_g~+), O_2(~1Δ_g), and O_2(~3Σ_g~-) during Oxygen Quenching of Triplet Excited Naphthalene Derivatives

机译:单线态氧敏化中的电荷转移和非电荷转移过程:三重态激发萘衍生物氧淬灭过程中O_2(〜1Σ_g〜+),O_2(〜1Δ_g)和O_2(〜3Σ_g〜-)的形成

获取原文
获取原文并翻译 | 示例
           

摘要

Both excited singlet states ~1Σ_g~+ and ~1Δ_g and the unexcited triplet ground state ~3Σ_g~- of molecular oxygen are formed with varying rate constants k_T~(1Σ), k_T~(1Δ), and k_T~(3Σ), respectively, during the quenching by O_2 of triplet states T_1 of sufficient energy E_T. The present paper reports these rate constants for a series of nine naphthalene sensitizers of very different oxidation potential, E_(ox) but almost constant E_T. These data complement data for k_T~(1Σ), k_T~(1Δ), and k_T~(3Σ), determined previously for 13 sensitizers of very different E_T. The analysis of the whole set of rate constants reveals that the quenching of triplet states by O_2 results in the formation of O_2(~1Σ_g~+), O_2(~1Δ_g), and O_2(~3Σ_g~-) with varying efficiencies by two different channels, each capable of producing all three product states. One quenching channel originates from excited ~(1,3)(T_1·~3Σ) complexes without chargetransfer character (nCT), which we cannot distinguish from encounter complexes; the other originates from ~1(T_1·~3Σ) and ~3(T_1·~3Σ) exciplexes with partial charge-transfer character (pCT). Rate constants of formation for O_2(~1Σ_g~+), O_2(~1△_g), and O_2(~3Σ_g~-) are controlled by the respective excess energies via an energy gap relation in the nCT channel, whereas they vary with varying free energy of complete electron transfer in the pCT channel. A fast intersystem crossing equilibrium between ~1(T_1·~3Σ) and ~3(T_1·~3Σ) is surprisingly observed only in the nCT but not in the pCT channel.
机译:分子氧的两个激发单重态〜1Σ_g〜+和〜1Δ_g和未激发三重态基态〜3Σ_g〜-分别以不同的速率常数k_T〜(1Σ),k_T〜(1Δ)和k_T〜(3Σ)形成在通过O_2淬灭三重态T_1时,具有足够的能量E_T。本文报道了一系列氧化电位E_(ox)但几乎恒定的E_T的九种萘敏化剂的速率常数。这些数据补充了先前针对13个E_T差异很大的敏化剂确定的k_T〜(1Σ),k_T〜(1Δ)和k_T〜(3Σ)数据。对整个速率常数集合的分析表明,O_2对三重态的淬灭导致形成O_2(〜1Σ_g〜+),O_2(〜1Δ_g)和O_2(〜3Σ_g〜-),效率各变化2个。不同的渠道,每个渠道都能产生所有三种产品状态。一个猝灭通道源自没有电荷转移特性(nCT)的〜(1,3)(T_1·〜3Σ)激发态配合物,我们无法将其与遇到的配合物区分开。另一个来自具有部分电荷转移特性(pCT)的〜1(T_1·〜3Σ)和〜3(T_1·〜3Σ)激基。 O_2(〜1Σ_g〜+),O_2(〜1△_g)和O_2(〜3Σ_g〜-)的形成速率常数由各自的过量能量通过nCT通道中的能隙关系来控制,但它们随改变pCT通道中电子完全转移的自由能。令人惊讶地,仅在nCT中观察到了〜1(T_1·〜3Σ)和〜3(T_1·〜3Σ)之间的快速系统间交叉平衡,而在pCT通道中却没有。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号