...
首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >In Situ Catalytic Encapsulation of Core-Shell Nanoparticles Having Variable Shell Thickness: Dielectric and Energy Storage Properties of High-Permittivity Metal Oxide Nanocomposites
【24h】

In Situ Catalytic Encapsulation of Core-Shell Nanoparticles Having Variable Shell Thickness: Dielectric and Energy Storage Properties of High-Permittivity Metal Oxide Nanocomposites

机译:壳厚度可变的核壳纳米粒子的原位催化包封:高介电常数金属氧化物纳米复合材料的介电和储能性能

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Aluminum oxide encapsulated high-permittivity (ε) BaTiO3 and ZrO2 core-shell nanoparticles having variable Al2O3 shell thicknesses were prepared via a layer-by-layer methylaluminoxane coating process. Subsequent chemisorptive activation of the single-site metallocene catalyst [rac-ethylene-bisindenyl]zirconium dichloride (EBIZrCl2) on these Al2O3-encapsulated nanoparticles, followed by propylene addition, affords 0-3 metal oxide-isotactic polypropylene nanocomposites. Nanocomposite microstructure is analyzed by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, differential scanning calorimetry, atomic force microscopy, and Raman spectroscopy. The in situ polymerization process yields homogeneously dispersed nanoparticles in a polyolefin matrix. Electrical measurements indicate that as the concentration of the filler nanoparticles increases, the effective permittivity of the nanocomposites increases, affording s values as high as 6.2. The effective permittivites of such composites can be predicted by the Maxwell-Garnett formalism using the effective medium theory for volume fractions (v_f) of nanoparticles below 0.06. The nanocomposites have leakage current densities of ~10~(-7)-10~(-9) A/cm~2 at an electric field of 10~5 V/cm, and very low dielectric loss in the frequency range 100 Hz-1 MHz. Increasing the Al2O3 shell thickness dramatically suppresses the leakage current and high field dielectric loss in these nanocomposites.
机译:通过逐层甲基铝氧烷涂覆工艺制备了氧化铝封装的高介电常数(ε)BaTiO3和ZrO2核壳纳米粒子,具有可变的Al2O3壳厚度。随后在这些Al2O3包封的纳米颗粒上进行单中心茂金属催化剂[rac-乙烯-双茚基]氯化锆(EBIZrCl2)的化学吸附活化,然后添加丙烯,得到0-3的金属氧化物-等规聚丙烯纳米复合材料。纳米复合材料的微观结构通过X射线衍射,透射电子显微镜,扫描电子显微镜,差示扫描量热法,原子力显微镜和拉曼光谱分析。原位聚合过程在聚烯烃基质中产生均匀分散的纳米颗粒。电学测量表明,随着填料纳米颗粒浓度的增加,纳米复合材料的有效介电常数增加,提供高达6.2的s值。此类复合材料的有效介电常数可通过Maxwell-Garnett形式主义使用有效介质理论对低于0.06的纳米粒子的体积分数(v_f)进行预测。纳米复合材料在10〜5 V / cm的电场下的漏电流密度为〜10〜(-7)-10〜(-9)A / cm〜2,在100 Hz-的频率范围内介电损耗非常低1 MHz。增加Al2O3的外壳厚度可显着抑制这些纳米复合材料中的泄漏电流和高电场介电损耗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号