...
【24h】

Isoflurane Inhibits NaChBac, a Prokaryotic Voltage-Gated Sodium Channel

机译:异氟烷抑制NaChBac,原核电压门控钠通道

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Volatile anesthetics inhibit mammalian voltage-gated Na~+ channels, an action that contributes to their presynaptic inhibition of neurotransmitter release. We measured the effects of isoflurane, a prototypical halogenated ether volatile anesthetic, on the prokaryotic voltage-gated Na~+ channel from Bacillus halodurans (NaChBac). Using whole-cell patch-clamp recording, human embryonic kidney 293 cells transfected with NaChBac displayed large inward currents (/_(Na)) that activated at potentials of -60 mV or higher with a peak voltage of activation of 0 mV (from a holding potential of -80 mV) or -10 mV (from a holding potential of -100 mV). Isoflurane inhibited /_(Na) in a concentration-dependent manner over a clinically relevant concentration range; inhibition was significantly more potent from a holding potential of -80 mV (IC_(50) = 0.35 mM) than from -100mV (IC_(50) = 0.48 mM). Isoflurane positively shifted the voltage dependence of peak activation, and it negatively shifted the voltage dependence of end steady-state activation. The voltage dependence of inactivation was negatively shifted with no change in slope factor. Enhanced inactivation of /_(Na) was 8-fold more sensitive to isoflurane than reduction of channel opening. In addition to tonic block of closed and/or open channels, isoflurane enhanced use-dependent block by delaying recovery from inactivation. These results indicate that a prokaryotic voltage-gated Na ~+ channel, like mammalian voltage-gated Na + channels, is inhibited by clinical concentrations of isoflurani involving multiple state-dependent mechanisms. NaChBac should provide a useful model for structure-function studies of volatile anesthetic actions on voltage-gated ion channels.
机译:挥发性麻醉剂抑制哺乳动物的电压门控Na〜+通道,这种作用有助于突触前抑制神经递质的释放。我们测量了异氟烷,一种典型的卤代醚挥发性麻醉剂,对卤代芽孢杆菌(NaChBac)的原核电压门控Na +通道的影响。使用全细胞膜片钳记录,用NaChBac转染的人类胚胎肾293细胞显示出较大的内向电流(/ _(Na)),该内向电流在-60 mV或更高的电势下激活,激活峰值电压为0 mV(来自保持电势为-80 mV)或-10 mV(保持电势为-100 mV)。在临床相关的浓度范围内,异氟烷以浓度依赖性方式抑制/ _(Na);从-80 mV的保持电位(IC_(50)= 0.35 mM)抑制作用比从-100 mV(IC_(50)= 0.48 mM)明显更有效。异氟烷使峰激活的电压依赖性正向移动,而使端稳态激活的电压依赖性负向移动。失活的电压依赖性为负移,而斜率因子没有变化。 / _(Na)的增强灭活对异氟醚的敏感性比减少通道开放的敏感性高8倍。除了闭合和/或开放通道的补品阻滞剂外,异氟烷还通过延迟失活的恢复来增强使用依赖性的阻滞剂。这些结果表明原核电压门控的Na〜+通道,像哺乳动物电压门控的Na +通道一样,受到涉及多种状态依赖性机制的异氟兰的临床浓度的抑制。 NaChBac应该为电压门控离子通道上的挥发性麻醉作用的结构功能研究提供有用的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号