...
首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >Deformation of network connectivity in the inferior olive of connexin 36-deficient mice is compensated by morphological and electrophysiological changes at the single neuron level.
【24h】

Deformation of network connectivity in the inferior olive of connexin 36-deficient mice is compensated by morphological and electrophysiological changes at the single neuron level.

机译:连接蛋白36缺陷小鼠下橄榄中网络连接的变形可以通过单个神经元水平的形态和电生理变化来补偿。

获取原文
获取原文并翻译 | 示例
           

摘要

Compensatory mechanisms after genetic manipulations have been documented extensively for the nervous system. In many cases, these mechanisms involve genetic regulation at the transcription or expression level of existing isoforms. We report a novel mechanism by which single neurons compensate for changes in network connectivity by retuning their intrinsic electrical properties. We demonstrate this mechanism in the inferior olive, in which widespread electrical coupling is mediated by abundant gap junctions formed by connexin 36 (Cx36). It has been shown in various mammals that this electrical coupling supports the generation of subthreshold oscillations, but recent work revealed that rhythmic activity is sustained in knock-outs of Cx36. Thus, these results raise the question of whether the olivary oscillations in Cx36 knock-outs simply reflect the status of wild-type neurons without gap junctions or the outcome of compensatory mechanisms. Here, we demonstrate that the absence of Cx36 results in thickerdendrites with gap-junction-like structures with an abnormally wide interneuronal gap that prevents electrotonic coupling. The mutant olivary neurons show unusual voltage-dependent oscillations and an increased excitability that is attributable to a combined decrease in leak conductance and an increase in voltage-dependent calcium conductance. Using dynamic-clamp techniques, we demonstrated that these changes are sufficient to transform a wild-type neuron into a knock-out-like neuron. We conclude that the absence of Cx36 in the inferior olive is not compensated by the formation of other gap-junction channels but instead by changes in the cytological and electroresponsive properties of its neurons, such that the capability to produce rhythmic activity is maintained.
机译:基因操纵后的补偿机制已被广泛记录为神经系统。在许多情况下,这些机制涉及在现有同工型的转录或表达水平上的遗传调控。我们报告了一种新颖的机制,通过该机制,单个神经元通过重新调节其固有的电特性来补偿网络连接性的变化。我们在下橄榄中证明了这种机制,其中广泛的电耦合是由连接蛋白36(Cx36)形成的大量间隙连接介导的。在各种哺乳动物中已经显示出这种电耦合支持亚阈值振荡的产生,但是最近的工作表明在Cx36的敲除中维持节律性活动。因此,这些结果提出了一个问题,即Cx36基因敲除中的橄榄振荡是否仅反映没有间隙连接的野生型神经元的状态或补偿机制的结果。在这里,我们证明了Cx36的缺失会导致具有间隙连接样结构的较厚的树枝状晶体,并具有异常宽的神经元间隙,从而阻止了电声耦合。突变的橄榄神经元细胞显示出异常的电压依赖性振荡和增加的兴奋性,这归因于泄漏电导的降低和电压依赖性钙电导的共同增加。使用动态钳技术,我们证明了这些变化足以将野生型神经元转化为基因敲除型神经元。我们得出的结论是,下橄榄中Cx36的缺乏不能通过其他间隙连接通道的形成来补偿,而是可以通过其神经元的细胞学和电响应特性的变化来补偿,从而保持产生节律性活动的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号