...
首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >A Simple and Effective Way of Achieving Highly Efficient and Thermally Stable Bulk-Heterojunction Polymer Solar Cells Using Amorphous Fullcrene Derivatives as Electron Acceptor
【24h】

A Simple and Effective Way of Achieving Highly Efficient and Thermally Stable Bulk-Heterojunction Polymer Solar Cells Using Amorphous Fullcrene Derivatives as Electron Acceptor

机译:使用非晶全丙烯衍生物作为电子受体的高效高效且热稳定的本体-异质结聚合物太阳能电池的简单有效方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Polymer solar cells have been considered as a promising alternative for renewable energy because of their potential for low-cost manufacturing.1 Until now, the most efficient solar cell was based on the bulk-heterojunction (BHJ) devices composed of a blend of poly(3-hexylthio-phene) (P3HT) electron donor and [6,6]-phenyl C_(61) butyric acid methyl ester (PC_(61)BM) electron acceptor that showed a power conversion efficiency (PCE) of ~5%. Within the BHJ film, it is critical to control the morphology of the blend to form an interpenetrating network with nanoscale phase separation between the donor and the acceptor at a distance of ~10 nm to maximize exciton dissociation and provide an effective pathway for charge transport and collection. The optimum morphology can be achieved by controlling the kinetics of segregation and crystallization of the components through careful adjustment of the parameters involved in the fabrication processes, such as solvent, blend ratio, thermal annealing, and other post treatment conditions. However, such a phase-separated morphological structure is not very thermodynamically stable because small molecules like PCBM and even polymers like P3HT can still have certain freedom to diffuse slowly or recrystallize over time especially under elevated temperatures. This gradual change in the microstructure will lead to reduced number of interfaces and result in degrading the performance of the device. This is detrimental to the long-term performance of polymer solar cells.
机译:聚合物太阳能电池因其低成本制造的潜力而被认为是可再生能源的有前途的替代品。1到目前为止,最高效的太阳能电池是基于由聚( 3-己基噻吩(P3HT)电子给体和[6,6]-苯基C_(61)丁酸甲酯(PC_(61)BM)电子受体,其功率转换效率(PCE)为5%。在BHJ膜中,至关重要的是控制混合物的形态以形成互穿网络,供体和受体之间的纳米级相分离距离约为10 nm,以最大程度地激发子解离,并提供有效的电荷传输和解离途径。采集。可以通过仔细调整制造过程中涉及的参数(例如溶剂,混合比,热退火和其他后处理条件)来控制组件的偏析和结晶动力学,从而获得最佳形态。但是,这种相分离的形态结构在热力学上不是很稳定,因为小分子(如PCBM)甚至聚合物(如P3HT)仍具有一定的自由度,可以随时间缓慢扩散或重结晶,尤其是在高温下。微观结构的这种逐渐变化将导致界面数量减少,并导致器件性能下降。这不利于聚合物太阳能电池的长期性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号