...
首页> 外文期刊>The Journal of Comparative Neurology >A novel model of retinal ablation demonstrates that the extent of rod cell death regulates the origin of the regenerated zebrafish rod photoreceptors.
【24h】

A novel model of retinal ablation demonstrates that the extent of rod cell death regulates the origin of the regenerated zebrafish rod photoreceptors.

机译:视网膜消融的新型模型表明,杆状细胞死亡的程度调节了再生斑马鱼杆感光细胞的起源。

获取原文
获取原文并翻译 | 示例
           

摘要

The adult zebrafish retina continuously produces rod photoreceptors from infrequent Muller glial cell division, yielding neuronal progenitor cells that migrate to the outer nuclear layer and become rod precursor cells that are committed to differentiate into rods. Retinal damage models suggested that rod cell death induces regeneration from rod precursor cells, whereas loss of any other retinal neurons activates Muller glia proliferation to produce pluripotent neuronal progenitors that can generate any other neuronal cell type in the retina. We tested this hypothesis by creating two transgenic lines that expressed the E. coli nitroreductase enzyme fused to EGFP (NTR-EGFP) in only rods. Treating transgenic adults with metronidazole resulted in two rod cell death models. First, killing all rods throughout the Tg(zop:nfsB-EGFP)(nt19) retina induced robust Muller glial proliferation, which yielded clusters of neuronal progenitor cells. In contrast, ablating only a subset of rods across the Tg(zop:nfsB-EGFP)(nt20) retina led to rod precursor, but not Muller glial, cell proliferation. We propose that two different criteria determine whether rod cell death will induce a regenerative response from the Muller glia rather than from the resident rod precursor cells in the ONL. First, there must be a large amount of rod cell death to initiate Muller glia proliferation. Second, the rod cell death must be acute, rather than chronic, to stimulate regeneration from the Muller glia. This suggests that the zebrafish retina possesses mechanisms to quantify the amount and timing of rod cell death.
机译:成年的斑马鱼视网膜从不常见的穆勒神经胶质细胞分裂中连续产生杆状光感受器,从而产生神经元祖细胞,该神经元祖细胞迁移至外核层并成为杆状前体细胞,并承诺分化为杆状细胞。视网膜损伤模型表明,杆状细胞死亡诱导杆状前体细胞再生,而其他视网膜神经元的丧失则激活穆勒神经胶质细胞增殖,从而产生多能神经元祖细胞,可以在视网膜中产生任何其他神经元细胞类型。我们通过创建两个仅在棒中表达与EGFP(NTR-EGFP)融合的大肠杆菌硝基还原酶的转基因品系来检验该假设。用甲硝唑治疗转基因成人导致了两种杆状细胞死亡模型。首先,杀死整个Tg(zop:nfsB-EGFP)(nt19)视网膜中的所有杆,会诱导强劲的穆勒神经胶质细胞增殖,从而产生神经元祖细胞簇。相比之下,仅消融跨Tg(zop:nfsB-EGFP)(nt20)视网膜的一部分视杆会导致视杆前体细胞增殖,但不会导致穆勒胶质细胞增殖。我们提出了两个不同的标准来确定杆状细胞死亡是否会从穆勒胶质细胞而不是从ONL中的常驻杆状前体细胞中诱导再生反应。首先,必须有大量的杆状细胞死亡以启动穆勒胶质细胞增殖。其次,杆状细胞死亡必须是急性的,而不是慢性的,以刺激穆勒胶质细胞的再生。这表明斑马鱼视网膜具有量化杆状细胞死亡的数量和时间的机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号