...
首页> 外文期刊>The Journal of Comparative Neurology >Tiling Among Stereotyped Dendritic Branches in an Identified Drosophila Motoneuron
【24h】

Tiling Among Stereotyped Dendritic Branches in an Identified Drosophila Motoneuron

机译:在已确定的果蝇Momoturon的定型树突分支之间平铺。

获取原文
获取原文并翻译 | 示例

摘要

Different types of neurons can be distinguished by the specific targeting locations and branching patterns of their dendrites, which form the blueprint for wiring the brain. Unraveling which specific signals control different aspects of dendritic architecture, such as branching and elongation, pruning and cessation of growth, territory formation, tiling, and self-avoidance requires a quantitative comparison in control and genetically manipulated neurons. The highly conserved shapes of individually identified Drosophila neurons make them well suited for the analysis of dendritic architecture principles. However, to date it remains unclear how tightly dendritic architecture principles of identified central neurons are regulated. This study uses quantitative reconstructions of dendritic architecture of an identified Drosophila flight motoneuron (MN5) with a complex dendritic tree, comprising more than 4,000 dendritic branches and 6 mm total length. MN5 contains a fixed number of 23 dendritic subtrees, which tile into distinct, nonoverlapping volumes of the diffuse motor neuropil. Across-animal comparison and quantitative analysis suggest that tiling of the different dendritic subtrees of the same neuron is caused by competitive and repulsive interactions among subtrees, perhaps allowing different dendritic compartments to be connected to different circuit elements. We also show that dendritic architecture is similar among different wild-type and GAL4 driver fly lines. Metric and topological dendritic architecture features are sufficiently constant to allow for studies of the underlying control mechanisms by genetic manipulations. Dendritic territory and certain topological measures, such as tree compactness, are most constant, suggesting that these reflect the intrinsic molecular identity of the neuron.
机译:不同类型的神经元可以通过其树突的特定靶向位置和分支模式来区分,这形成了连接大脑的蓝图。弄清哪些特定信号控制树突状结构的不同方面,例如分支和伸长,修剪和停止生长,区域形成,平铺和自我避免,需要对控制和基因操纵的神经元进行定量比较。个体识别的果蝇神经元的高度保守的形状使其非常适合于树突结构原理的分析。然而,迄今为止,尚不清楚如何严格控制已鉴定的中枢神经元的树突结构原理。这项研究使用已确定的果蝇飞行运动神经元(MN5)的树突结构的定量重建,该树具有复杂的树突树,包括超过4,000个树突分支和6 mm总长度。 MN5包含固定数量的23个树突状子树,这些树分成为不同的,不重叠的弥散性运动神经桩。跨动物的比较和定量分析表明,同一神经元的不同树突状子树的平铺是由子树之间的竞争性和排斥性相互作用引起的,也许允许将不同的树突状区室连接到不同的电路元件。我们还表明,树突结构在不同的野生型和GAL4驱动器飞行系中相似。度量和拓扑树突结构的特征足够恒定,以允许通过遗传操作研究潜在的控制机制。树突区域和某些拓扑度量(例如树紧实度)最恒定,这表明它们反映了神经元的固有分子身份。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号