首页> 外文期刊>The Journal of Membrane Biology: An International Journal for Studies on the Structure, Function & Genesis of Biomembranes >The Effect of Millisecond Pulsed Electric Fields (msPEF) on Intracellular Drug Transport with Negatively Charged Large Nanocarriers Made of Solid Lipid Nanoparticles (SLN): In Vitro Study
【24h】

The Effect of Millisecond Pulsed Electric Fields (msPEF) on Intracellular Drug Transport with Negatively Charged Large Nanocarriers Made of Solid Lipid Nanoparticles (SLN): In Vitro Study

机译:毫秒脉冲电场(msPEF)对带负电的固体脂质纳米颗粒(SLN)制成的大型纳米载体的细胞内药物运输的影响:体外研究

获取原文
获取原文并翻译 | 示例
           

摘要

Drug delivery technology is still a dynamically developing field of medicine. The main direction in nanotechnology research (nanocarriers, nanovehicles, etc.) is efficient drug delivery to target cells with simultaneous drug reduction concentration. However, nanotechnology trends in reducing the carrier sizes to several nanometers limit the volume of the loaded substance and may pose a danger of uncontrolled access into the cells. On the other hand, nanoparticles larger than 200 nm in diameter have difficulties to undergo rapid diffusional transport through cell membranes. The main advantage of large nanoparticles is higher drug encapsulation efficiency and the ability to deliver a wider array of drugs. Our present study contributes a new approach with large Tween 80 solid lipid nanoparticles SLN (i.e., hydrodynamic GM-SLN-glycerol monostearate, GM, as the lipid and ATO5-SLNs-glyceryl palmitostearate, ATO5, as the lipid) with diameters DH of 379.4 nm and 547 nm, respectively. They are used as drug carriers alone and in combination with electroporation (EP) induced by millisecond pulsed electric fields. We evaluate if EP can support the transport of large nanocarriers into cells. The study was performed with two cell lines: human colon adenocarcinoma LoVo and hamster ovarian fibroblastoid CHO-K1 with coumarin 6 (C6) as a fluorescent marker for encapsulation. The biological safety of the potential treatment procedure was evaluated with cell viability after their exposure to nanoparticles and EP. The EP efficacy was evaluated by FACS method. The impact on intracellular structure organization of cytoskeleton was visualized by CLSM method with alpha-actin and beta-tubulin. The obtained results indicate low cytotoxicity of both carrier types, free and loaded with C6. The evaluation of cytoskeleton proteins indicated no intracellular structure damage. The intracellular uptake and accumulation show that SLNs do not support transport of C6 coumarin. Only application of electroporation improved the transport of encapsulated and free C6 into both treated cell lines.
机译:药物输送技术仍然是动态发展的医学领域。纳米技术研究(纳米载体,纳米载体等)的主要方向是有效地将药物输送到靶细胞,同时降低药物浓度。但是,将载体尺寸减小到几纳米的纳米技术趋势限制了所装载物质的体积,并可能导致不受控制地进入细胞的危险。另一方面,直径大于200 nm的纳米粒子很难通过细胞膜进行快速扩散传输。大型纳米颗粒的主要优点是更高的药物封装效率和提供更多药物的能力。我们的当前研究为采用Tween 80固体脂质纳米颗粒SLN(即,流体动力学GM-SLN-甘油单硬脂酸酯GM,作为脂质和ATO5-SLNs-棕榈硬脂酸甘油酯,ATO5,作为脂质)提供了一种新方法,其直径DH为379.4 nm和547 nm。它们单独用作药物载体,并与毫秒脉冲电场引起的电穿孔(EP)结合使用。我们评估EP是否可以支持将大型纳米载体转运到细胞中。该研究使用两种细胞系进行:人结肠腺癌LoVo和仓鼠卵巢成纤维细胞样CHO-K1,其中香豆素6(C6)作为封装的荧光标记。潜在治疗程序的生物安全性通过暴露于纳米颗粒和EP后的细胞生存力进行评估。通过FACS方法评估EP疗效。用α-肌动蛋白和β-微管蛋白通过CLSM方法观察对细胞骨架的细胞内结构组织的影响。所获得的结果表明,游离的和负载有C6的两种载体类型的细胞毒性均较低。细胞骨架蛋白的评估表明没有细胞内结构损伤。细胞内的摄取和积累表明SLN不支持C6香豆素的运输。仅电穿孔的应用改善了包封的和游离的C6向两种处理的细胞系的运输。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号