...
首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >First-Principles Design of New Electrodes for Proton-Conducting Solid-Oxide Electrochemical Cells: A-Site Doped Sr2Fe1.5Mo0.5O6-delta Perovskite
【24h】

First-Principles Design of New Electrodes for Proton-Conducting Solid-Oxide Electrochemical Cells: A-Site Doped Sr2Fe1.5Mo0.5O6-delta Perovskite

机译:质子传导固体氧化物电化学电池新电极的第一性原理设计:A站点掺杂Sr2Fe1.5Mo0.5O6-δ钙钛矿

获取原文
获取原文并翻译 | 示例

摘要

Electrolyzer and fuel cells based on proton-conducting solid oxide ceramics (PC-SOEC/FC) are gaining wide interest as promising green technologies for H-2 production and conversion. Despite major advances in PC electrolytes, large-scale deployment of PC-SOEC/FC has been hindered by severe limitations at electrodes, which must ensure catalytic activity, electronic conduction, and high proton diffusion rates. Designing electrodes with mixed proton and electron conduction capability represents a great challenge. Several attempts have been based on composite materials made of common electrocatalysts and PC electrolytes, but the resulting electrodes have often suffered stability and conductivity problems. Inspired by the good performance in PC regime of some perovskite oxides, here we propose an alternative approach by designing a new single-phase triple-conducting oxide (TCO) from the recently proposed and well-tested mixed ion-electron conductive electrocatalyst Sr2Fe1.5Mo0.5O6-delta (SFMO) double perovskite. We investigated with first-principles methods (DFT+U) the key processes that promote proton transport, i.e., oxygen vacancy formation, water dissociative incorporation into the defective lattice, and proton transfer along the oxide sublattice. We focused on SFMO and A-substituted derivatives with Ba or K cations. Both dopants lower the proton migration barrier of SFMO, thus improving proton transport effectiveness. In particular, we found K-doped SFMO to be the best candidate thanks to its peculiar and very favorable structural and electronic properties. Moreover, from our ab initio analysis, we identified a general design principle to enhance proton transport in perovskite oxides at the nanoscale. Our computational results can be easily implemented to develop and test new low-cost TCO-based electrodes for PC-SOEC/FC.
机译:作为用于H-2生产和转化的有前途的绿色技术,基于质子传导固体氧化物陶瓷(PC-SOEC / FC)的电解槽和燃料电池受到了广泛的关注。尽管PC电解质取得了重大进步,但由于电极的严格限制,PC-SOEC / FC的大规模部署受到了阻碍,电极必须确保催化活性,电子传导和高质子扩散速率。设计具有混合质子和电子传导能力的电极是一个巨大的挑战。基于由普通电催化剂和PC电解质制成的复合材料,已经进行了多种尝试,但是所得电极经常遭受稳定性和导电性问题。受某些钙钛矿氧化物在PC体系中的良好性能的启发,在这里,我们通过从最近提出并经过充分测试的混合离子电子导电性电催化剂Sr2Fe1.5Mo0设计新的单相三态氧化物(TCO),提出了一种替代方法。 .5O6-δ(SFMO)双钙钛矿。我们用第一原理方法(DFT + U)研究了促进质子传输的关键过程,即氧空位形成,水离解结合到缺陷晶格中以及质子沿着氧化物亚晶格转移。我们专注于具有Ba或K阳离子的SFMO和A取代的衍生物。两种掺杂剂都降低了SFMO的质子迁移势垒,从而提高了质子传输效率。特别地,由于其独特且非常有利的结构和电子特性,我们发现掺K的SFMO是最佳的选择。此外,从我们的从头算分析中,我们确定了一种通用设计原理,可以增强纳米级钙钛矿氧化物中质子的传输。我们的计算结果可以轻松实现,以开发和测试用于PC-SOEC / FC的新型低成本TCO基电极。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号