首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Shape Evolution of 'Multibranched' Mn-Zn Ferrite Nanostructures with High Performance: A Transformation of Nanocrystals into Nanoclusters
【24h】

Shape Evolution of 'Multibranched' Mn-Zn Ferrite Nanostructures with High Performance: A Transformation of Nanocrystals into Nanoclusters

机译:高性能“多支” Mn-Zn铁氧体纳米结构的形状演​​变:纳米晶体向纳米团簇的转变

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Monodisperse magnetic Mn-Zn ferrite nanostructures with various morphologies have been successfully synthesized via high-temperature decomposition of metal acetylacetonate (acac) in the presence of oleic acid (OA) and oleyamine (OAm). In a classical crystal nucleation/growth process, differential stabilization of OA on specific crystal facets may alter relative crystal growth rates, resulting in the formation of zero-dimensional (0-D) spherical, cubical, and starlike nanocrystals (ca. 9, 11, 16 nm), respectively. Furthermore, shortening nucleation duration might bring a deficient nucleation and a rapid increase in monomer concentration, which accelerates the subsequent growth process of nanocrystals, leading to the formation of the starlike nanocrystals with larger size (ca. 19-23 nm). They are further oriented to assemble reciprocally, gradually forming initial three-dimensional (3-D) "branched" nanoclusters (ca. 30-40 nm) to minimize the magnetostatic energy, owing to their size-dependent magnetic dipolar interaction. In addition, the surface-defect-induced secondaiy growth of the "branched" nanoclusters may considerably improve their uniformity, accompanied by the size increase in the presence of the monomers, resulting in the final "multibranched" nanoclusters with formation of sharp or obtuse edges (ca. 45-50 nm). Our study reveals the transformation of 0-D nanocrystals to 3-D nanoclusters as well as the shape evolution mechanism, which provide a versatile synthetic strategy for shape-controlled nanostructure. The multibranched nanoclusters have the higher magnetization and magnetically induced heating efficiency in an alternating current magnetic field, which can be used as promising heating agents for biomedical application.
机译:通过在油酸(OA)和油胺(OAm)的存在下对乙酰丙酮金属(acac)进行高温分解,成功地合成了具有各种形态的单分散磁性Zn-Zn铁氧体纳米结构。在经典的晶体成核/生长过程中,OA在特定晶面上的差异稳定性可能会改变相对晶体的生长速率,从而导致形成零维(0-D)球形,立方和星形纳米晶体(约9、11 ,16 nm)。此外,成核持续时间的缩短可能会导致成核不足和单体浓度快速增加,从而加速了随后的纳米晶体生长过程,导致形成了较大尺寸(约19-23 nm)的星形纳米晶体。由于它们的尺寸依赖性磁偶极相互作用,它们进一步定向为相互组装,逐渐形成初始的三维(3-D)“分支”纳米团簇(约30-40 nm),以使静磁能最小化。另外,“分支”纳米团簇的表面缺陷诱导的二次生长可以显着改善其均匀性,伴随着单体存在时尺寸的增加,导致最终的“多分支”纳米团簇形成锋利的或钝的边缘。 (约45-50 nm)。我们的研究揭示了0-D纳米晶体到3-D纳米团簇的转变以及形状演化机制,这为形状控制的纳米结构提供了一种通用的合成策略。多支纳米团簇在交流磁场中具有较高的磁化强度和磁感应加热效率,可用作生物医学应用中有希望的加热剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号