首页> 外文期刊>The Journal of Chemical Physics >GLASS TRANSITION AND ATOMIC STRUCTURES IN SUPERCOOLED GA0.15ZN0.15MG0.7 METALLIC LIQUIDS - A CONSTANT PRESSURE MOLECULAR DYNAMICS STUDY
【24h】

GLASS TRANSITION AND ATOMIC STRUCTURES IN SUPERCOOLED GA0.15ZN0.15MG0.7 METALLIC LIQUIDS - A CONSTANT PRESSURE MOLECULAR DYNAMICS STUDY

机译:过冷GA0.15ZN0.15MG0.7金属液体中玻璃的转变和原子结构-恒压分子动力学研究。

获取原文
获取原文并翻译 | 示例
           

摘要

Glass transition in supercooled Ga0.15Zn0.15Mg0.7 metallic liquid has been simulated by making use of a constant-pressure molecular dynamics technique via the pairwise interatomic potentials calculated from a self-consistent nonlocal model pseudopotential theory. The structures of liquids and glasses are analyzed through careful examinations of the pair distributions functions, structure factors, and the local ordering units, in comparing with the Zn0.3Mg0.7 and Ga0.3Mg0.7 binary cases. It demonstrates that binary Ga0.3Mg0.7 liquids and glasses show relatively stranger compound formation ability than Zn0.3Mg0.7. Although the partial substitution of Zn by Ga in Zn0.3Mg0.7 alloy leads no significant change in the glass transition temperature, it can produce considerable changes in both chemical and topological short-range orders. Chemically, there is a strong phase separation tendency between Ga and Zn atoms, the Zn-Mg heterocoordination preference can be suppressed to some extent by a stronger Ga-Mg compound formation tendency. Topologically, Ga0.15Zn0.15Mg0.7 alloy first appears to be similar to Ga0.3Mg0.7 at the high-temperature region during cooling, then it behaves more like that of Zn0.3Mg0.7 alloy at the low-temperature region. The addition of Ga also induces a restraint to the five-fold symmetry accompanied by an enhancement of the short-range order characterized by 1422- or 1311-type atomic bonded pairs. These results may provide qualitative explanations to some experimental observations on crystallization products and measured transport properties of the GaxZn0.15-xMg0.7 glasses. This study also provides further understandings of glass transition mechanisms and structural properties for the much more complicated multicomponents glass-forming systems that go beyond both the monatomic and the binary cases. (C) 1997 American Institute of Physics. [References: 35]
机译:利用恒压分子动力学技术,通过自洽非局部模型pseudo势理论计算的成对原子间势,模拟了过冷的Ga0.15Zn0.15Mg0.7金属液体中的玻璃化转变。与Zn0.3Mg0.7和Ga0.3Mg0.7二元情况相比,通过仔细检查对的分布函数,结构因子和局部有序单位来分析液体和玻璃的结构。结果表明,二元Ga0.3Mg0.7液体和玻璃比Zn0.3Mg0.7表现出相对更陌生的化合物形成能力。尽管在Zn0.3Mg0.7合金中用Ga部分取代Zn不会导致玻璃化转变温度发生显着变化,但它可以在化学和拓扑短程方面产生相当大的变化。化学上,在Ga和Zn原子之间有很强的相分离趋势,通过更强的Ga-Mg化合物形成趋势,可以在一定程度上抑制Zn-Mg杂配位。拓扑上,Ga0.15Zn0.15Mg0.7合金在冷却过程中首先在高温区域与Ga0.3Mg0.7相似,然后其行为更像在低温区域的Zn0.3Mg0.7合金。 Ga的添加还引起对五重对称性的限制,伴随着以1422或1311型原子键对为特征的短程有序增强。这些结果可能为一些关于GaxZn0.15-xMg0.7玻璃的结晶产物和测量的传输性质的实验观察提供定性解释。这项研究还提供了对于更复杂的多组分玻璃形成系统的玻璃化转变机理和结构性质的进一步理解,这些系统不仅限于单原子和二元情况。 (C)1997美国物理研究所。 [参考:35]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号