首页> 外文期刊>The Journal of Chemical Physics >ENERGY AND ANGULAR MOMENTUM CONTROL OF THE SPECIFIC OPACITY FUNCTIONS IN THE BA+HI-]BAI+H REACTION
【24h】

ENERGY AND ANGULAR MOMENTUM CONTROL OF THE SPECIFIC OPACITY FUNCTIONS IN THE BA+HI-]BAI+H REACTION

机译:BA + HI-] Bai + H反应中比容量函数的能量和角动量控制

获取原文
获取原文并翻译 | 示例
           

摘要

Crossed-beam and beam-gas experiments on the reaction Ba+HI-->BaI+H have been performed, in which the most probable collision energy ranges from 3 to 17 kcal/mol. The results, combined with previous experimental studies on this reaction system, show a remarkable collision energy dependence. Between low and high collision energies, a transition occurs in the intensity, width, and peak location of the product vibrational and rotational population distributions. The onset of this transition is estimated to occur at approximately 5 kcal/mol. For collision energies smaller than 5 kca/mol, the product vibrational distribution is bell shaped and peaks at v=12. For collision energies larger than 5 kcal/mol, a second maximum appears at v=0 in the vibrational distribution. The rotational distributions of the crossed-beam experiments are extremely narrow but broaden at lower collision energies. As the collision energy is increased above 5 kcal/mol, the BaI rotational excitation is very near the energetic limit, and the maximum for the BaI(v=0) rotational population distribution moves from J=415.5 to 5=538.5. In contrast, below the transition onset, the maximum remains unchanged around J=420.5. Moreover, the peaks of the BaI(v=1) and BaI(v=2) rotational distributions appear at successively lower J values, as expected from energy conservation arguments. The nature of the kinematic constraints for this reaction allows the determination of the opacity functions for the production of the BaI product in a specific vibrational level v. Detailed analysis of the collision energy dependence of the specific opacity functions offers insight into the role of conservation of energy and angular momentum in influencing this reaction. At low collision energies, the maximum reactive impact parameter, b(max), is determined by an angular momentum (centrifugal) barrier. At collision energies larger than 5 kcal/mol, conservation of energy dictates the value of b(max). These two processes are identified as the mechanisms that control the Ba+HI reaction cross section. The transition between the two mechanisms provides an interpretation for the bimodal character of the BaI product internal-state distribution. (C) 1996 American Institute of Physics. [References: 54]
机译:已经对反应Ba + HI-> BaI + H进行了横梁和束流气体实验,其中最可能的碰撞能量为3至17 kcal / mol。结果与先前对该反应系统的实验研究相结合,显示出显着的碰撞能量依赖性。在低碰撞能量和高碰撞能量之间,产品振动和旋转分布的强度,宽度和峰值位置会发生过渡。估计该转变的开始发生在大约5kcal / mol。对于小于5 kca / mol的碰撞能量,产物振动分布呈钟形,在v = 12时达到峰值。对于大于5 kcal / mol的碰撞能量,振动分布中的第二个最大值出现在v = 0处。横梁实验的旋转分布非常窄,但在较低的碰撞能量下会变宽。当碰撞能量增加到5 kcal / mol以上时,BaI旋转激发非常接近高能极限,BaI(v = 0)旋转种群分布的最大值从J = 415.5变为5 = 538.5。相反,在过渡开始以下,最大值在J = 420.5附近保持不变。此外,BaI(v = 1)和BaI(v = 2)旋转分布的峰值出现在J值连续较低的位置,这是从节能论证中得出的预期。该反应的运动学约束的性质允许在特定的振动水平v下确定生产BaI产品的不透明度函数。对特定不透明度函数的碰撞能量依赖性的详细分析可深入了解分子的守恒作用能量和角动量影响该反应。在低碰撞能量下,最大反作用冲击参数b(max)由角动量(离心)屏障确定。在碰撞能量大于5 kcal / mol时,能量守恒决定b(max)的值。这两个过程被确定为控制Ba + HI反应截面的机制。两种机制之间的过渡为BaI产物内部状态分布的双峰特征提供了解释。 (C)1996年美国物理研究所。 [参考:54]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号