首页> 外文期刊>The Journal of Chemical Physics >A NEW MOLECULAR DYNAMICS METHOD COMBINING THE REFERENCE SYSTEM PROPAGATOR ALGORITHM WITH A FAST MULTIPOLE METHOD FOR SIMULATING PROTEINS AND OTHER COMPLEX SYSTEMS
【24h】

A NEW MOLECULAR DYNAMICS METHOD COMBINING THE REFERENCE SYSTEM PROPAGATOR ALGORITHM WITH A FAST MULTIPOLE METHOD FOR SIMULATING PROTEINS AND OTHER COMPLEX SYSTEMS

机译:一种参考系统传播算法与快速多极方法相结合的分子动力学新方法,用于模拟蛋白质和其他复杂系统

获取原文
获取原文并翻译 | 示例
           

摘要

An efficient molecular dynamics (MD) algorithm is presented in this paper for biomolecular systems, which incorporates a novel variation on the fast multipole method (FMM) coupled to the reversible reference system propagator algorithm (r-RESPA). A top-down FMM is proposed which calculates multipoles recursively from the top of the box tree instead of from the bottom in Greengard's original FMM, in an effort to be more efficient for noncubic or nonuniform systems. In addition, the use of noncubic box subdivisions of biomolecular systems is used and discussed. Reversible RESPA based on a Trotter factorization of the Liouville propagator in generating numerical integration schemes is coupled to the top-down FMM and applied to a MD study of proteins in vacuo, and is shown to be able to use a much larger time-step than the standard velocity Verlet method for a comparable level of accuracy. Furthermore, bq using the FMM it becomes possible to perform MD simulations for very large biomolecules, since memory and CPU time requirements are now nearly of order of O(N) instead of O(N-2). For a protein with 9513 atoms (the photosynthetic reaction center), the efficient MD algorithm leads to 20-fold reduction in CPU time for the Coulomb interaction and approximately 15-fold reduction in total CPU time over the standard velocity Verlet algorithm with a direct evaluation of Coulomb forces. (C) 1995 American Institute of Physics. [References: 37]
机译:本文针对生物分子系统提出了一种有效的分子动力学(MD)算法,该算法结合了快速多极子方法(FMM)和可逆参考系统传播算法(r-RESPA)的新颖变化。提出了一种自上而下的FMM,该方法从框树的顶部而不是从Greengard原始FMM的底部递归地计算多极点,以提高非立方或非均匀系统的效率。另外,使用和讨论了生物分子系统的非立方盒细分的使用。在生成数值积分方案时,基于Liouville传播子的Trotter因式分解的可逆RESPA与自上而下的FMM耦合,并应用于真空中蛋白质的MD研究,并且被证明能够比使用更大的时间步长标准速度Verlet方法可获得可比的准确性。此外,使用FMM使用bq可以对非常大的生物分子执行MD仿真,因为现在的内存和CPU时间要求几乎接近O(N)而不是O(N-2)。对于具有9513个原子的蛋白质(光合作用反应中心),与直接评估标准速度Verlet算法相比,高效的MD算法可将库仑相互作用的CPU时间减少20倍,而将总CPU时间减少约15倍库仑部队。 (C)1995年美国物理研究所。 [参考:37]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号