首页> 外文期刊>The Journal of Chemical Physics >On the role of hydrodynamic interactions in block copolymer microphase separation
【24h】

On the role of hydrodynamic interactions in block copolymer microphase separation

机译:流体动力学相互作用在嵌段共聚物微相分离中的作用

获取原文
获取原文并翻译 | 示例
           

摘要

A melt of linear diblock copolymers (A_nB_m) can form a diverse range of microphase separated structures. The detailed morphology of the microstructure depends on the length of the polymer blocks A_n and B_m and their mutual solubility. In this paper, the role of hydrodynamic forces in microphase formation is studied. The microphase separation of block copolymer melts is simulated using two continuum methods: dissipative particle dynamics (DPD) and Brownian dynamics (BD). Although both methods produce the correct equilibrium distribution of polymer chains, the BD simulation does not include hydrodynamic interactions, whereas the DPD method correctly simulates the (compressible) Navier Stokes behavior of the melt. To quantify the mesophase structure, we introduce a new order parameter that goes beyond the usual local segregation parameter and is sensitive to the morphology of the system. In the DPD simulation, a melt of asymmetric block copolymers rapidly evolves towards the hexagonal structure that is predicted by mean-field theory, and that is observed in experiments. In contrast, the BD simulation remains in a metastable state consisting of interconnected tubes, and fails to reach equilibrium on a reasonable time scale. This demonstrates that the hydrodynamic forces play a critical part in the kinetics of microphase separation into the hexagonal phase. For symmetric block copolymers, hydrodynamics appears not to be crucial for the evolution. Consequently, the lamellar phase forms an order of magnitude faster than the hexagonal phase does, and thus it would be reasonable to infer a higher viscosity for the hexagonal phase than for the lamellar phase. The simulations suggest that the underlying cause of this difference is that the hexagonal phase forms via a metastable gyroid-like structure, and therefore forms via a nucleation-and -growth mechanism, whereas the lamellar phase is formed via spinodal decomposition.
机译:线性二嵌段共聚物的熔体(A_nB_m)可以形成各种各样的微相分离结构。微观结构的详细形态取决于聚合物嵌段A_n和B_m的长度及其互溶性。本文研究了流体动力在微相形成中的作用。使用两种连续方法模拟嵌段共聚物熔体的微相分离:耗散粒子动力学(DPD)和布朗动力学(BD)。尽管两种方法都能产生正确的聚合物链平衡分布,但BD模拟不包括流体动力学相互作用,而DPD方法则正确模拟了熔体的(可压缩)Navier Stokes行为。为了量化中间相结构,我们引入了一个新的有序参数,该参数超出了常规的局部偏析参数,并且对系统的形态很敏感。在DPD模拟中,不对称嵌段共聚物的熔体迅速向由均场理论预测的六角形结构发展,并在实验中观察到。相比之下,BD模拟保持处于由互连管组成的亚稳态,并且在合理的时间尺度上无法达到平衡。这表明流体动力在将微相分离成六方相的动力学中起着至关重要的作用。对于对称嵌段共聚物,流体动力学似乎对演化至关重要。因此,层状相形成的速度比六方相快一个数量级,因此推断六方相的粘度比层状相的粘度高是合理的。模拟表明,造成这种差异的根本原因是六方相是通过亚稳态的类固醇类螺旋结构形成的,因此是通过成核和生长机制形成的,而层状相是通过旋节线分解而形成的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号