首页> 外文期刊>The Journal of Chemical Physics >MOLECULAR DYNAMICS SIMULATIONS OF THE GLASS FORMER ORTHO-TERPHENYL
【24h】

MOLECULAR DYNAMICS SIMULATIONS OF THE GLASS FORMER ORTHO-TERPHENYL

机译:玻璃原对苯三酚的分子动力学模拟

获取原文
获取原文并翻译 | 示例
           

摘要

An 18-site, three-ring model has been developed for the van der Waals system ortho-terphenyl (OTP) which has been studied extensively experimentally because of its glass forming ability. The method of constraints has been used to freeze out the fast internal modes of the molecule, but the model retains some internal motion in the form of side-ring torsions. When used in molecular dynamics simulations, the model provides a reasonable representation of the properties of OTP in the liquid and supercooled liquid states, including the volume-temperature behavior and diffusion coefficients. The glass transition temperature has been obtained from the break in the slope of the volume-temperature curve and found to agree with experimental values, given the high cooling rates of the simulations. The short time dynamics of the system have been probed using velocity autocorrelation functions, mean-square displacements, van Hove correlation functions, and intermediate scattering functions. The dynamics of the model can be interpreted consistently within a molecular cage framework; It is found that the lifetimes of the transient cages increase significantly with decreasing temperature until, in the glass, cage breakup can no longer occur on the time scale of the simulations. Two distinct regimes are seen in the single particle motion in the liquid; these correspond to localized motion:within the cage and the diffusive motion that sets in after cage breakup. Around the supercooled liquid region, a subdiffusive behavior occurs between the two regimes-indicative of the increasing difficulty encountered by the cage breakup mechanisms. (C) 1995 American Institute of Physics. [References: 93]
机译:已经为范德华系统邻三苯(OTP)开发了一个18位三环模型,该模型因其玻璃形成能力而进行了广泛的实验研究。约束方法已用于冻结分子的快速内部模式,但该模型以侧环扭转的形式保留了一些内部运动。当用于分子动力学模拟时,该模型可以合理地表示液态和过冷液态中OTP的性质,包括体积-温度行为和扩散系数。玻璃化转变温度是从体积-温度曲线的斜率断裂处获得的,并且由于模拟的高冷却速率,发现与实验值一致。使用速度自相关函数,均方位移,van Hove相关函数和中间散射函数对系统的短时动力学进行了研究。可以在分子笼框架内一致地解释模型的动力学。发现瞬态笼的寿命随着温度的降低而显着增加,直到在玻璃中,笼的破裂不再发生在模拟的时间尺度上。在液体中的单个粒子运动中可以看到两种不同的状态。这些对应于局部运动:在笼子内以及在笼子破裂后开始的扩散运动。在过冷的液体区域周围,这两种状态之间发生了亚扩散行为,这表明笼式破碎机构遇到的困难越来越大。 (C)1995年美国物理研究所。 [参考:93]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号