首页> 外文期刊>The Journal of Chemical Physics >A stochastic technique for solving the Lorentz-Boltzmann equation for hard spheres: Application to the kinetics of gas absorption
【24h】

A stochastic technique for solving the Lorentz-Boltzmann equation for hard spheres: Application to the kinetics of gas absorption

机译:一种求解硬球洛伦兹-玻尔兹曼方程的随机技术:在气体吸收动力学中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

The Lorentz-Boltzmann equation for tagged particle motion in a hard sphere fluid may be interpreted as describing the motion of a particle propagating via a series of binary uncorrelated collisions in a structureless bath of fluid particles with a Maxwellian distribution of velocities. We describe a very general stochastic technique for solving the equation. The method can also be extended to the Enskog level, valid up to somewhat higher densities, by a simple scaling of the time. Having reproduced several known results for the Lorentz-Boltzmann equation we extend the method to a simple reaction process where there is no analytic result-the kinetics of gas absorption for a gas confined between two plates. For this process there are two simple analytic limits-the Knudsen limit (in which there are no collisions between absorbing particles) and the diffusive limit (where there are a large number of collisions between absorbing particles). We show that regardless of the Knudsen number, Kn, the Knudsen limit describes the very short time kinetics and the diffusive limit describes the long time kinetics. However, at moderate values of the Knudsen number the rate constant characterizing the long time kinetics differs from the diffusive value. This discrepancy scales away slowly (as 1/Kn) with increasing Knudsen number. (C) 1998 American Institute of Physics. [References: 17]
机译:硬球体流体中带标签粒子运动的洛伦兹-玻尔兹曼方程可以解释为描述了通过一系列具有麦克斯韦速度分布的无结构流体粒子浴中一系列二元不相关碰撞传播的粒子运动。我们描述了一种求解该方程的非常通用的随机技术。通过简单地缩放时间,该方法也可以扩展到Enskog级别,直至达到更高的密度。再现了Lorentz-Boltzmann方程的几个已知结果后,我们将该方法扩展到一个简单的反应过程,在该过程中没有分析结果-限制在两个板之间的气体的气体吸收动力学。对于此过程,有两个简单的分析极限:克努森极限(在其中吸收粒子之间没有碰撞)和扩散极限(在吸收粒子之间存在大量碰撞)。我们表明,不管克努森数Kn,克努森极限描述了很短的时间动力学,而扩散极限描述了很长时间的动力学。然而,在克努森数的适中值下,表征长时间动力学的速率常数与扩散值不同。随着Knudsen数的增加,这种差异逐渐减小(1 / Kn)。 (C)1998美国物理研究所。 [参考:17]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号