首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Low-Temperature Protonic Conduction Based on Surface Protonics: An Example of Nanostructured Yttria-Doped Zirconia
【24h】

Low-Temperature Protonic Conduction Based on Surface Protonics: An Example of Nanostructured Yttria-Doped Zirconia

机译:基于表面质子的低温质子传导:纳米结构掺杂氧化钇的氧化锆的一个例子

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In contrast to conventional ceramic ionic conductors relying on bulk ionic transport, making use of interfaces such as grain boundary and surface may provide various new possibilities to develop novel ionic conductors. Here we demonstrate that nanograined structures of yttria-doped zirconia (YSZ), of which the bulk property involves negligible proton solubility or conductivity, are endowed with appreciable proton conductivity via interfacial hydrated layers. A combination of nanopowder synthesis and ultra high-pressure compaction (4 GPa) at room temperature enables us to fabricate the nanograined specimens. The material thus prepared can retain an appreciable amount of protons and water within the grain-boundary or "internal surface", resulting in a hierarchical structure of hydroxyl groups and water molecules with different thermal stability and thereby mobility. The physicochemical properties of those protonic species have been investigated by means of in situ FT-IR, ~1H MAS NMR, and thermal desorption spectroscopy. At lower temperatures, proton conductivity prevails over normally observed oxide ion conductivity, which is facilitated by interplay of those protonic species at the interfaces. The present study provides a new prospect for developing proton-conducting materials which are based on "surface protonics" of nanograined oxides.
机译:与依赖于体离子传输的常规陶瓷离子导体相反,利用诸如晶界和表面之类的界面可以为开发新型离子导体提供各种新的可能性。在这里,我们证明,氧化钇掺杂的氧化锆(YSZ)的纳米颗粒结构,其整体性质涉及可忽略的质子溶解度或电导率,通过界面水合层具有明显的质子传导性。室温下纳米粉体合成与超高压压实(4 GPa)的结合使我们能够制造纳米颗粒标本。如此制备的材料可以在晶界或“内表面”内保留一定量的质子和水,从而导致具有不同的热稳定性和迁移率的羟基和水分子的分层结构。这些质子种类的物理化学性质已经通过原位FT-IR,〜1H MAS NMR和热解吸光谱法进行了研究。在较低温度下,质子电导率高于通常观察到的氧化物离子电导率,这是由于这些质子种类在界面处的相互作用所致。本研究为开发基于纳米颗粒氧化物“表面质子学”的质子传导材料提供了新的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号