...
首页> 外文期刊>The Journal of heart valve disease >Non-linear fluid-coupled computational model of the mitral valve.
【24h】

Non-linear fluid-coupled computational model of the mitral valve.

机译:二尖瓣的非线性流体耦合计算模型。

获取原文
获取原文并翻译 | 示例
           

摘要

BACKGROUND AND AIM OF THE STUDY: The dynamics of the mitral valve result from the synergy of left heart geometry, local blood flow and tissue integrity. Herein is presented the first coupled fluid-structure computational model of the mitral valve in which valvular kinematics result from the interaction of local blood flow and a continuum representation of valvular microstructure. METHODS: The diastolic geometry of the mitral valve was assembled from previously published experimental data. Anterior and posterior leaflets were modeled as networks of entangled collagen fibers, embedded in an isotropic matrix. The resulting non-linear continuum description of mitral tissue was implemented in a three-dimensional membrane formulation. Chordal tension-only behavior was defined from experimental tensile tests. The computational model considered the valve immersed in a domain of Newtonian blood, with an experimentally determined viscosity corresponding to a shear rate of 180 s(-1) at 37 degrees C. Ventricular and atrial pressure curves were applied to ventricular and atrial surfaces of the blood domain. RESULTS: Peak closing flow and volume were 51 ml/s and 1.17 ml, respectively. Papillary muscle force ranged dynamically between 0.0 and 2.6 N. Acoustic pressure (RMS) was found to be 3.3 Pa, with a peak frequency of 72 Hz at 0.064 s from the onset of systole. Model predictions showed excellent agreement with available transmitral flow, papillary force and first heart sound (S1) acoustic data. CONCLUSION: The addition of blood flow and an experimentally driven microstructural description of mitral tissue represent a significant advance in computational studies of the mitral valve. This model will be the foundation for future computational studies on the effect of pathophysiological tissue alterations on mitral valve competence.
机译:研究背景和目的:二尖瓣的动力学是由左心脏几何形状,局部血流和组织完整性的协同作用产生的。本文介绍了二尖瓣的第一个耦合流体结构计算模型,其中瓣膜运动学是由局部血流和瓣膜微结构的连续表示相互作用产生的。方法:二尖瓣的舒张期几何形状是根据以前发表的实验数据组装而成的。前叶和后叶被建模为包埋在各向同性基质中的胶原纤维缠结网络。在三维膜配方中实现了二尖瓣组织的非线性连续体描述。通过实验拉伸试验确定仅具有弦张力的行为。计算模型考虑到瓣膜浸入牛顿血液的区域,实验确定的粘度对应于37摄氏度下180 s(-1)的剪切速率。心室和心房压力曲线应用于心室和心房表面。血域。结果:峰值关闭流量和体积分别为51 ml / s和1.17 ml。乳头肌力在0.0到2.6 N之间动态变化。发现声压(RMS)为3.3 Pa,从收缩开始至0.064 s的峰值频率为72 Hz。模型预测显示与可用的传输流量,乳头力和第一心音(S1)声学数据极佳的一致性。结论:增加血流量和实验驱动的二尖瓣组织的微观结构描述代表了二尖瓣计算研究的重大进展。该模型将成为未来病理生理组织改变对二尖瓣功能影响的计算研究的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号