...
首页> 外文期刊>The International Journal of Advanced Manufacturing Technology >Modeling machining of particle-reinforced aluminum-based metal matrix composites using cohesive zone elements
【24h】

Modeling machining of particle-reinforced aluminum-based metal matrix composites using cohesive zone elements

机译:使用内聚区元素对颗粒增强的铝基金属基复合材料进行建模加工

获取原文
获取原文并翻译 | 示例

摘要

Finite element modeling for the machining of heterogeneous materials like particle-reinforced metal matrix composites has not been much successful as compared to homogeneous metals due to several issues. The most challenging issue is to deal with severe mesh distortion due to nonuniform deformation inside the workpiece. Other problems are related to the modeling of the interface between reinforcement particles and matrix and tool-reinforcement particle interaction. In this study, different strategies are adopted for finite element models (FEM) to cope with the above issues and comparative analyses have been performed. These 2D FE models are based on plane strain formulations and utilize a coupled temperature displacement method. The workpiece is modeled using reinforcement particle size and volume fraction inside the base matrix. The interface between the reinforcement particles and the matrix is modeled by using two approaches, with and without cohesive zone elements, and the chip separation is modeled with and without using a parting line. This allows models to simulate the local effects such as tool-reinforcement particle interaction and reinforcement particle debonding. In addition, the models can predict cutting forces, chip morphology, stresses, and temperature distributions. The effects of different methodologies on the model development, simulation runs, and predicted results have been discussed. The results are compared with experimental data, and it has been found that the utilization of cohesive zone elements (CZE) with the parting line approach seems to be the best one for the modeling of metal matrix composite (MMC) machining.
机译:与均质金属相比,用于加工非均质材料(如颗粒增强金属基质复合材料)的有限元建模与成功相比尚​​不十分成功。最具挑战性的问题是应对由于工件内部不均匀变形而导致的严重网格变形。其他问题与增强颗粒和基体之间的界面建模以及工具与增强颗粒之间的相互作用有关。在这项研究中,有限元模型(FEM)采用了不同的策略来解决上述问题,并进行了比较分析。这些二维有限元模型基于平面应变公式,并采用耦合温度位移法。使用基础基质内部的增强颗粒尺寸和体积分数对工件进行建模。增强颗粒与基体之间的界面是通过使用两种方法(有或没有内聚区元素)来建模的,而切屑分离是通过有或没有使用分型线来建模的。这允许模型模拟局部效应,例如工具与增强粒子的相互作用以及增强粒子的脱胶。此外,这些模型可以预测切削力,切屑形态,应力和温度分布。讨论了不同方法对模型开发,仿真运行和预测结果的影响。将结果与实验数据进行比较,发现使用分型线方法结合内聚区元素(CZE)似乎是金属基复合材料(MMC)加工建模的最佳方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号