...
首页> 外文期刊>The European physical journal: Special topics >Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides
【24h】

Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides

机译:使用手性图案化肽指导聚电解质复合物的相行为

获取原文
获取原文并翻译 | 示例
           

摘要

Polyelectrolyte complexes (PECs) have a broad range of promising applications as soft materials due to their self-assembly and diversity of structure and chemical composition. Peptide polymer PECs are highly biocompatible and biodegradable, making them particularly useful for encapsulation of food additives and flavors, micellar drug delivery, medical and underwater adhesives, fetal membrane patches, and scaffolds for cell growth in tissue engineering. While parameters affecting PEC formation and stability in regards to charge effects are well researched, little is known about the effects of van der Waals interactions, hydrogen bonding, and secondary structure in these materials. Peptide chirality provides a unique opportunity to manipulate PEC phase to modulate the amount of solid-like (precipitate) or liquid-like (coacervate) character by influencing hydrogen bonding interactions among peptide chains. In previous work, we showed that chiral peptides form solid complexes, while complexes with even one racemic peptide were fluid. This raised the interesting question of how long a homochiral sequence must be to result in solid phase formation. In this work, we designed chiral patterned peptides of polyglutamic acid and polylysine ranging from 50 to 90% L-chiral residues with increasing numbers of sequential L-chiral residues before a chirality change. These polymers were mixed together to form PECs. We observed that 8 or more sequential L-chiral residues are necessary to achieve both the appearance of a precipitate phase and sustained beta-sheets in the complex, as determined by optical imaging and FTIR Spectroscopy. Less homochiral content results in formation of a coacervate phase. Thus, we show that chiral sequence can be used to control the phase transition of PECs. Understanding how to manipulate PEC phase using chiral sequence as presented here may enable tuning of the material properties to achieve the desired mechanical strength for coatings and polymer brushes, or the most effective molecular release kinetics for drug delivery applications, for example.
机译:聚电解质复合物(PEC)具有自组装性,结构和化学组成的多样性,因此作为软材料具有广泛的应用前景。肽聚合物PEC具有高度的生物相容性和可生物降解性,使其特别适用于食品添加剂和调味剂的封装,胶束药物递送,医学和水下粘合剂,胎膜贴剂以及用于组织工程中细胞生长的支架。尽管对电荷效应方面影响PEC形成和稳定性的参数进行了充分的研究,但对于这些材料中范德华相互作用,氢键和二级结构的影响知之甚少。肽的手性性提供了一个独特的机会,可通过影响肽链之间的氢键相互作用来控制PEC相,以调节固体状(沉淀)或液体状(凝聚)的数量。在以前的工作中,我们表明手性肽形成了固体复合物,而即使具有一个外消旋肽的复合物也是流体。这就提出了一个有趣的问题,即同手性序列必须多长时间才能导致固相形成。在这项工作中,我们设计了手性图案化的聚谷氨酸和聚赖氨酸的肽,其手性改变前L-手性残基的范围从50%到90%,且顺序L-手性残基的数量不断增加。将这些聚合物混合在一起以形成PEC。我们观察到,通过光学成像和FTIR光谱法确定,要在复合物中同时实现沉淀相和持续的β-折叠,必须有8个或更多顺序的L-手性残基。较少的手性含量导致凝聚相的形成。因此,我们表明手性序列可用于控制PEC的相变。理解如何使用此处介绍的手性序列操作PEC相,可以调节材料性能,以实现涂层和聚合物刷所需的机械强度,或者实现药物输送应用中最有效的分子释放动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号