首页> 外文期刊>The European physical journal: Special topics >Computational modeling of chemotactic signaling and aggregation of microglia around implantation site during deep brain stimulation
【24h】

Computational modeling of chemotactic signaling and aggregation of microglia around implantation site during deep brain stimulation

机译:脑深部刺激过程中趋化信号和植入部位周围小胶质细胞聚集的计算模型

获取原文
获取原文并翻译 | 示例
       

摘要

It is well established that prolonged electrical stimulation of brain tissue causes massive release of ATP in the extracellular space. The released ATP and the products of its hydrolysis, such as ADP and adenosine, become the main elements mediating chemotactic sensitivity and motility of microglial cells via subsequent activation of P2Y_(2,12) as well as A3A and A2A adenosine receptors. The size of the sheath around the electrode formed by the microglial cells is an important criterion for the optimization of the parameters of electrical current delivered to brain tissue. Here, we study a purinergic signaling pathway underlying the chemotactic motion of microglia towards the implanted electrode during deep brain stimulation. We present a computational model describing formation of a stable aggregate around the implantation site due to the joint chemo-attractive action of ATP and ADP together with a mixed influence of extracellular adenosine. The model was built in accordance with the classical Keller-Segel approach and includes an equation for the cells' density as well as equations describing the hydrolysis of extracellular ATP via successive reaction steps ATP →ADP →AMP →adenosine. The results of our modeling allowed us to reveal the dependence of the width of the encapsulating layer around the electrode on the amount of ATP released due to permanent electrical stimulation. The dependences of the aggregates' size on the parameter governing the nonlinearity of interaction between extracellular adenosine and adenosine receptors are also analyzed.
机译:众所周知,长时间的脑组织电刺激会导致细胞外空间中ATP大量释放。释放的ATP及其水解产物(如ADP和腺苷)成为通过随后激活P2Y_(2,12)以及A3A和A2A腺苷受体介导小胶质细胞趋化敏感性和运动性的主要元素。由小胶质细胞形成的围绕电极的鞘的大小是优化传递至脑组织的电流参数的重要标准。在这里,我们研究了在深部脑刺激过程中小胶质细胞趋向植入电极的趋化运动的嘌呤能信号通路。我们提出了一个计算模型,描述了由于ATP和ADP的联合化学吸引作用以及细胞外腺苷的混合影响而在植入部位周围形成稳定的聚集体的过程。该模型是根据经典的Keller-Segel方法构建的,包括细胞密度方程和描述通过连续反应步骤ATP→ADP→AMP→腺苷水解细胞外ATP的方程。建模的结果使我们能够揭示电极周围封装层的宽度对由于永久电刺激而释放的ATP量的依赖性。还分析了聚集体尺寸对控制细胞外腺苷和腺苷受体之间相互作用非线性的参数的依赖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号