首页> 外文期刊>The European physical journal, E. Soft matter >Optimisations and evolution of the mammalian respiratory system*
【24h】

Optimisations and evolution of the mammalian respiratory system*

机译:哺乳动物呼吸系统的优化和进化*

获取原文
获取原文并翻译 | 示例
           

摘要

The respiratory system of mammalians is made of two successive branched structures with different physiological functions. The upper structure, or bronchial tree, is a fluid transportation system made of approximately 15 generations of bifurcations leading to the order of about 2~(15) = 30, 000 terminal bronchioles with a diameter of approximately 0.5mm in the human lung. The branching pattern continues up to generation 23 but the structure and function of each of the subsequent structures, called acini, is different. Each acinus consists in a branched system of ducts surrounded by alveoli and plays the role of a diffusion cell where oxygen and carbon dioxide are exchanged with blood across the alveolar membrane. We show here that the bronchial tree simultaneously presents several different optimal properties. It is first energy efficient, second, it is space filling and third it is also “rapid”. This physically based multioptimality suggests that, in the course of evolution, an organ selected against one criterion could have been used later for a totally different purpose. For example, once selected for its energetic efficiency for the transport of a viscous fluid like blood, the same genetic material could have been used for its optimized rapidity. This would have allowed the emergence of atmospheric respiration made of inspiration-expiration cycles. For this phenomenon to exist, rapidity is essential as fresh air has to reach the gas exchange organs, the pulmonary acini, before the beginning of expiration. We finally show that the pulmonary acinus is optimized in the sense that the acinus morphology is directly related to the notion of a “best possible” extraction of entropic energy by a diffusion exchanger that has to feed oxygen efficiently from air to blood across a membrane of finite permeability.
机译:哺乳动物的呼吸系统由两个具有不同生理功能的连续分支结构组成。上部结构或支气管树是一种由大约15代分叉组成的流体输送系统,在人肺中导致大约2〜(15)= 30,000个末端细支气管的直径。分支模式一直持续到第23代,但是每个后续结构(称为腺泡)的结构和功能都不相同。每个腺泡都由被肺泡包围的分支导管系统组成,并起扩散细胞的作用,其中氧气和二氧化碳与血液通过肺泡膜交换。我们在这里表明,支气管树同时呈现出几种不同的最佳特性。首先是高能效,其次是空间填充,其三是“快速”。这种基于物理的多重最优性表明,在进化过程中,针对一个标准选择的器官以后可能会用于完全不同的目的。例如,一旦选择了具有粘性的流体(例如血液)运输的能量效率,就可以使用相同的遗传材料来实现最佳的速度。这将允许出现由吸气-呼气周期构成的大气呼吸。对于这种现象的存在,速度是至关重要的,因为新鲜空气必须在呼气开始之前到达气体交换器官,即肺腺泡。我们最终表明,从某种意义上说,肺腺泡是经过优化的,它的腺泡形态与扩散交换器“最好”提取熵能的概念直接相关,扩散交换器必须通过空气有效地将氧气从血液输送到血液中,穿过膜有限磁导率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号