...
首页> 外文期刊>The European physical journal, E. Soft matter >NMR relaxation study of molecular dynamics in columnar and smectic phases of a PAMAM liquid-crystalline co-dendrimer
【24h】

NMR relaxation study of molecular dynamics in columnar and smectic phases of a PAMAM liquid-crystalline co-dendrimer

机译:核磁共振弛豫研究的分子动力学的PAMAM液晶共树枝状聚合物的柱状和近晶相

获取原文
获取原文并翻译 | 示例

摘要

We present the first results obtained by proton (H-1) nuclear magnetic relaxation studies of molecular dynamics in a supermolecular liquid-crystal dendrimer exhibiting columnar rectangular and smectic-A phases. The H-1 spin-lattice relaxation time (T-1) dispersions are interpreted using two relaxation mechanisms associated with collective motions and local molecular reorientations of the dendritic segments in the low- and high-frequency ranges, respectively. The T-1 values show a drop around 2.3 MHz that is attributed to a contribution coming from cross-relaxation between H-1 and nitrogen nuclear spins. In the high-frequency range the motions appear to be of similar nature in both mesophases and are ascribed to reorientations of dendritic segments (belonging to the core and/or to the mesogenic units) characterized by two correlation times. Notable differences in the dynamics between the columnar and layered phases are observed in the low-frequency range. Depending on the mesophase they are discussed in terms of elastic deformations of the columns and layer undulations. In this study we find that the dendritic core influences the dynamics of the mesogenic units both for local and collective motions. These results can be understood in terms of spatial constraints imposed by the dendritic architecture and by the supermolecular arrangement in the mesophases.
机译:我们提出的质子(H-1)核磁弛豫研究显示出柱状矩形和近晶A相的超分子液晶树状大分子中的分子动力学的第一个结果。 H-1自旋晶格弛豫时间(T-1)分散体是使用两种弛豫机制来解释的,这两种弛豫机制分别与低频范围和高频范围内的树突段的集体运动和局部分子重取向有关。 T-1值显示出约2.3 MHz的下降,这归因于H-1和氮核自旋之间的交叉松弛。在高频范围内,运动在两个中间相中似乎具有相似的性质,并且归因于以两个相关时间为特征的树枝状片段(属于核和/或介晶单元)的重新取向。在低频范围内,观察到柱状相和分层相之间的动力学差异显着。根据中间相,将根据柱的弹性变形和层起伏来讨论它们。在这项研究中,我们发现树突核心影响局部和集体运动的介晶单元的动力学。这些结果可以从树状结构和中间相中的超分子排列所施加的空间约束方面来理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号