首页> 外文期刊>The anatomical record, Part A. Discoveries in molecular, cellular, and evolutionary biology >Finite-element model construction for the virtual synthesis of the skulls in vertebrates: Case study of Diplodocus
【24h】

Finite-element model construction for the virtual synthesis of the skulls in vertebrates: Case study of Diplodocus

机译:脊椎动物头骨虚拟合成的有限元模型构建:梁龙案例研究

获取原文
获取原文并翻译 | 示例
       

摘要

The measurement of strains in real skulls is an inductive method that yields information about the stresses occurring in the a priori existing shape. In contrast, the approach taken here to determine the relationship between skull function and skull shape applies Wolffs law through a deductive technique of structure synthesis. This article describes the application of this method in the exact virtual synthesis of a sauropod skull, e.g., Diplodocus longus Marsh from Wyoming. An unspecific homogeneous solid is first constructed, giving the stresses ample volume to spread between points of force application and constraint. ANSYS 7.0 is used to form 10-noded tetrahedral finite elements with a maximum of 130,000 nodes. The initial conditions are the functional spaces for the eye openings, muscle forces, and the placement of the dental arcade, including assumed bite forces. Enforcing equilibrium of forces, the primary 3D stress flows in each load case are summarized by a physiological superposition, which accumulates the highest value of stress in each finite element. If the stress free parts are eliminated and the summarized stress flows are maintained, a reduced model appears, which is very similar to the real skull. This reduction of shape can be repeated iteratively and leads to a more exact form. Changes in the form of the dental arcade, its position relative to the braincase, the origins of muscles, or the height of the face lead to models that clearly resemble morphological differences between genera. The synthesis of a skull in this way demonstrates the direct correlation between functional loading and the biological structure and shape and can be used to test hypotheses regarding the relationship between structure and function during skull evolution. (c) 2005 Wiley-Liss, Inc.
机译:测量真实头骨中的应变是一种归纳法,可得出有关先验现有形状中出现的应力的信息。相反,此处采用的确定头骨功能与头骨形状之间关系的方法通过结构合成的演绎技术应用了Wolffs定律。本文介绍了该方法在蜥脚类头骨的精确虚拟合成中的应用,例如,怀俄明州的Diplodocus longus Marsh。首先构造一个非特定的均质固体,使应力有足够的体积分布在力施加点和约束点之间。 ANSYS 7.0用于形成最多包含130,000个节点的10节点四面体有限元。初始条件是眼图张开,肌肉力量和牙科拱廊位置(包括假定的咬合力)的功能空间。为了实现力的平衡,在每种载荷情况下的主要3D应力流都通过生理叠加来总结,该叠加会在每个有限元中积累最高的应力值。如果消除了无应力部分并保持了汇总的应力流,则会出现简化的模型,该模型与真实头骨非常相似。形状的这种减小可以迭代地重复并且导致更精确的形式。牙科拱廊的形式,其相对于脑袋的位置,肌肉的起源或面部高度的变化导致模型明显类似于属之间的形态差异。以这种方式合成的头骨证明了功能负荷与生物学结构和形状之间的直接相关性,可用于检验有关头骨进化过程中结构与功能之间关系的假设。 (c)2005 Wiley-Liss,Inc.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号