首页> 外文期刊>The Analyst: The Analytical Journal of the Royal Society of Chemistry: A Monthly International Publication Dealing with All Branches of Analytical Chemistry >How useful is molecular modelling in combination with ion mobility mass spectrometry for 'small molecule' ion mobility collision cross-sections?
【24h】

How useful is molecular modelling in combination with ion mobility mass spectrometry for 'small molecule' ion mobility collision cross-sections?

机译:分子建模与离子迁移质谱结合使用对“小分子”离子迁移碰撞截面有多大作用?

获取原文
获取原文并翻译 | 示例
           

摘要

Ion mobility mass spectrometry is used to measure the drift-time of an ion. The drift-time of an ion can be used to calculate the collision cross-section (CCS) in travelling wave ion mobility (e.g. Waters Synapt and Vion instruments) or directly determine the experimental CCS (e.g. Agilent 6560 instrument and many drift-tube instruments). A comparison of the experimental CCS and theoretical CCS values obtained from trajectory method He-(g) parameterised MOBCAL and N-2(g) parameterised MOBCAL software, for a range of 20 'small molecules' is presented. This study utilises density functional theory B3LYP methods and the 6-31G+(d,p) basis set to calculate theoretical CCS values. This study seeks to assess the accuracy of a common procedure using CCS calibration with poly-(D/L)-alanine derived from drift-cell measurements and the original release of MOBCAL software and compare it with recent improvements with a drug-like molecule calibration set and a revision of MOBCAL parameterised for N-2(g) drift gas. This study represents one of the first quantitative evaluations of the agreement between theoretical CCS and experimental CCS values for a range of small pharmaceutically relevant molecules using travelling wave ion mobility mass spectrometry. Accurate theoretical CCS may allow optimisation of ion mobility separations in silico, provide CCS databases that can confirm structures without the need for alternative analytical tools such as nuclear magnetic resonance spectroscopy (NMR) and assignment of unknowns and positional isomers without requiring reference materials.
机译:离子迁移率质谱法用于测量离子的漂移时间。离子的漂移时间可用于计算行波离子迁移率(例如Waters Synapt和Vion仪器)中的碰撞截面(CCS)或直接确定实验性CCS(例如Agilent 6560仪器和许多漂移管仪器) )。给出了从轨迹方法He-(g)参数化的MOBCAL和N-2(g)参数化的MOBCAL软件获得的实验CCS和理论CCS值的比较,适用于20个“小分子”范围。本研究利用密度泛函理论B3LYP方法和6-31G +(d,p)基础集来计算理论CCS值。这项研究旨在评估使用CCS校准和源自漂移细胞测量的聚(D / L)-丙氨酸的原始程序以及MOBCAL软件的原始版本的准确性,并将其与药物样分子校准的最新改进进行比较设置并修改了针对N-2(g)漂移气体的MOBCAL参数版本。这项研究是使用行波离子淌度质谱技术对一系列药物相关小分子理论CCS和实验CCS值之间的一致性进行的第一个定量评估之一。准确的理论CCS可以优化硅离子迁移率分离,提供CCS数据库可以确认结构,而无需使用其他分析工具,例如核磁共振波谱(NMR)以及未知物和位置异构体的分配,而无需使用参考材料。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号